EQT Plaza 625 Liberty Avenue, Ste. 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

August 25, 2014

Via Certified Mail Return Receipt Requested No. 7015 0640 0000 9694 4090

Mr. William Durham WVDEP – Division of Air Quality 601 57th Street, SE Charleston, WV 25304

Re: R13 Permit Application EQT Gathering LLC – Janus Compressor Station Doddridge County, WV

Dear Mr. Durham:

EQT Gathering LLC (EQT) is submitting this permit application to obtain an R13 Permit for a new compressor station located off in Doddridge County, West Virginia (Janus Compressor Station).

The main source of air emissions at the Janus Compressor Station will be four (4) natural gas-fired compressor engines (each rated at 5,350 HP). Each engine is a lean burn spark ignition unit that will compress natural gas from nearby wells and gathering systems for transmission via pipeline. The engines will be equipped with oxidation catalysts to reduce carbon monoxide (CO), formaldehyde, and volatile organic compound (VOC) emissions. The engines will be manufactured after July 1, 2007 and are subject to the emission standards, testing and record keeping requirements of New Source Performance Standards (NSPS) for Spark Ignition Engines (40 CFR 60, Subpart JJJJ). The construction of the facility will not trigger prevention of significant deterioration, but the facility will be a major source with respect to the Title V permit program. EQT will submit a Title V operating permit application within one year of start-up of the facility.

The compressed natural gas will be processed through one of two (2) triethylene glycol (TEG) dehydration units, rated at 125 million standard cubic feet per day (MMscfd) of gas throughput and equipped with a natural gas fired reboilers rated at 2.31 Million British Thermal Units per hour (MMBtu/hr heat input). Each TEG unit will be controlled via enclosed ground flare (rated at 7 MMBtu/hr). The dehydration unit will be subject to regulation as an area source under 40 CFR 63, Subpart HH - National Emission Standards for Hazardous Air Pollutants (NESHAP) From Oil and Natural Gas Production Facilities. However, as these units meet the exemption criteria specified in §63.764(e)(1)(ii), the only applicable requirements are to maintain records as specified by §63.774(d)(1).

Mr. William Durham August 25, 2015 Page 2 of 2

The Janus Compressor Station will also be equipped with five (5) micro-turbine driven generators; each rated at 200 kilowatts of electricity (KWe), for power generation at the facility. These micro-turbines are not subject to NSPS Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, since the maximum rated heat input of each turbine is less than 10 MMBtu/hr. The facility will also include two small natural gas-fired fuel heaters rated at 1.15 and 0.77 MMBtu/hr of heat input, each are also exempt from permitting.

EQT is proposing to install two (2) 8,820-gallon produced fluids tanks at the Janus Compressor Station. The produced fluid storage tanks will be subject to NSPS Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution as currently effective; however since VOC emissions are less than 6 tpy, the control standards do not apply. The tanks will be controlled by an enclosed ground flare (rated at 41 MMBtu/hr).

Finally, the application also includes information on 22 other small storage tanks with negligible emissions and estimates of fugitive emissions from the Station.

Enclosed are two electronic copies and one original hard copy of the R13 application. EQT appreciates your review of this application. If you have any questions or comments about the attached information or have additional information requirements, please, feel free to contact me at (412) 553-7848.

Sincerely,

R. Alex Bosiljevac Environmental Coordinator

R13 PERMIT APPLICATION EQT Gathering, LLC > Janus Compressor Station

Doddridge County, West Virginia

Prepared By:

TRINITY CONSULTANTS 4500 Brooktree Rd. Suite 103 Wexford, PA 15090 (724) 935-2611

August 2015

Environmental solutions delivered uncommonly well

1. INTRODUCTION	3
1.1. FACILITY AND PROJECT DESCRIPTION	3
1.1.1. Compressor Engines	3
1.1.2. Dehydration Unit	3
1.1.3. Storage Tanks	3
1.1.4. Fuel Gas Heater	4
1.1.5. Microturbine Generators	4
1.2. R-13 APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. R13 APPLICATION FORM	7
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE	
ATTACHMENT B: MAP	
ATTACHMENT C: INSTALLATION AND START UP SCHEDULE	
ATTACHMENT D: REGULATORY DISCUSSION	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAM	
ATTACHMENT G: PROCESS DESCRIPTION	
ATTACHMENT I: EMISSION UNITS TABLE	
ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET	
ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET	
ATTACHMENT L: EMISSIONS UNIT DATA SHEETS	
ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEET	
ATTACHMENT N: SUPPORTING EMISSION CALCULATIONS	
ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
ATTACHMENT P: PUBLIC NOTICE	

EQT Gathering, LLC (EQT) is submitting this Rule 13 (R-13) permit application to the West Virginia Department of Environmental Protection (WVDEP) for the proposed construction and operation of a natural gas compressor station located in Doddridge County, West Virginia (Janus Compressor Station).

1.1. FACILITY AND PROJECT DESCRIPTION

The Janus Compressor Station will be a natural gas gathering facility covered under Standard Industrial Classification (SIC) code 1311. The facility will have the potential to operate 24 hours per day, and 7 days per week. The station will consists of four (4) lean burn natural gas fired compressor engines (each rated at 5,350 horsepower [hp]) equipped with oxidation catalyst, two (2) triethylene glycol (TEG) dehydration units (each rated at 125 million standard cubic feet per day [MMscfd])), with associated reboilers (rated at 2.31 MMBtu/hr heat input) and controlled by enclosed flares (each rated at 7.0 MMbtu/hr), five (5) microturbine generator (each rated 200 kW), two (2) fuel gas heaters (rated at 1.15 MMbtu/hr and 0.77 MMbtu/hr), two (2) produced fluid tanks (210 bbl each) controlled by a tank enclosed flare (rated at 41 MMbtu/hr), as well as twenty (22) miscellaneous storage tanks.

A description of each source category is included below. A process flow diagram is included as Attachment F

1.1.1. Compressor Engines

EQT is proposing to install four (4) natural gas-fired reciprocating engines for the compression and transmission of natural gas. The engines will be 4-stroke, lean burn, spark ignition engines each rated at 5,350 hp and equipped with oxidation catalyst for control of carbon monoxide (CO), volatile organic compound (VOC), and formaldehyde (HCHO) emissions.

The function of these reciprocating compressors is to raise the discharge pressure of the gas to overcome the effect of frictional losses in the pipeline upstream of the station and maintain the required suction pressure to reduce gathering line pressures to allow wells to feed gas into the system

1.1.2. Dehydration Unit

The purpose of the dehydration unit is to remove water from the natural gas stream using TEG. In the absorber tower, the TEG absorbs water from the gas stream. The water rich glycol then passes through a flash tank where the pressure of the rich TEG is dropped. During this process, natural gas entrained in the glycol stream is flashed off. The water rich glycol is then heated in a reboiler where water and impurities are liberated from the glycol before it is recycled through the unit. Emissions from the dehydration regenerator vent and flash tank are controlled by the enclosed flares. Each dehydration unit has the potential to operate 8,760 hours per year, which is reflected in emission calculations.

1.1.3. Storage Tanks

The Janus Compressor Station will operate twenty four (24) storage tanks as described as below (nominal capacity listed):

- > T-001 Produced Fluids Tank 8,820 gallons
- > T-002 Produced Fluids Tank 8,820 gallons
- > T-003 Engine Lube Oil Tank 2,000 gallons
- > T-004 Compressor Oil Tank 2,000 gallons
- > T-005 New MEG Tank 2,000 gallons
- > T-006 Used MEG Tank 2,000 gallons

EQT Gathering, LLC | Janus Compressor Station Trinity Consultants

T-007	Used Oil Tank	4,200 gallons
T-008	Ice-chek Tank	4,000 gallons
T-009	Engine Oil Tank	300 gallons
T-010	Engine Oil Tank	300 gallons
T-011	Engine Oil Tank	300 gallons
T-012	Engine Oil Tank	300 gallons
T-013	Compressor Oil Tank	300 gallons
T-014	Compressor Oil Tank	300 gallons
T-015	Compressor Oil Tank	300 gallons
T-016	Compressor Oil Tank	300 gallons
T-017	Ice-chek Tank	550 gallons
T-018	Ice-chek Tank	550 gallons
T-019	Ice-chek Tank	550 gallons
T-020	Ice-chek Tank	550 gallons
T-021	Ice-chek Tank	550 gallons
T-022	Ice-chek Tank	550 gallons
T-023	New TEG Tank	2,000 gallons
	T-008 T-009 T-010 T-011 T-012 T-013 T-014 T-015 T-016 T-017 T-018 T-019 T-020 T-021 T-021 T-022	 T-008 Ice-chek Tank T-009 Engine Oil Tank T-010 Engine Oil Tank T-011 Engine Oil Tank T-012 Engine Oil Tank T-013 Compressor Oil Tank T-014 Compressor Oil Tank T-015 Compressor Oil Tank T-016 Compressor Oil Tank T-017 Ice-chek Tank T-018 Ice-chek Tank T-019 Ice-chek Tank T-020 Ice-chek Tank T-021 Ice-chek Tank T-022 Ice-chek Tank T-022 Ice-chek Tank

1.1.4. Fuel Gas Heater

EQT is proposing to add two (2) natural gas-fired fuel gas heaters rated at 1.15 MMBtu/hr and 0.77 MMBtu/hr of heat input at the Janus Compressor Station. The heaters will operate continuously (i.e., 8760 hours per year) and preheat natural gas to maintain temperature above dewpoint prior to combustion.

1.1.5. Microturbine Generators

There will be five (5) microturbine generator at the Janus Compressor Station. The microturbine generator is a Model C1000 low-NO_x generator (5 identical units of 200 kW each) manufactured by Capstone and will provide electrical power to the station.

1.2. R-13 APPLICATION ORGANIZATION

This R-13 permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: R-13 Application Forms;
- > Attachment A: Business Certificate;
- > Attachment B: Map;
- > Attachment C: Installation and Start Up Schedule;
- > Attachment D: Regulatory Discussion;
- > Attachment E: Plot Plan;
- > Attachment F: Detailed Process Flow Diagram;
- > Attachment G: Process Description;
- > Attachment I: Emission Units Table;
- > Attachment J: Emission Points Data Summary Sheet;
- > Attachment K: Fugitive Emissions Data Summary Sheet;
- > Attachment L: Emissions Unit Data Sheets;
- > Attachment M: Air Pollution Control Device Sheet;
- > Attachment N: Supporting Emission Calculations;
- > Attachment 0: Monitoring/Recordkeeping/Reporting/Testing Plans;
- > Attachment P: Public Notice;
 - Attachment S: Title V Revision Information; and
- > Application Fee

>

The characteristics of air emissions from the Janus Compressor Station, along with the methodology used for calculating emissions from the proposed new sources, are described in narrative form below. Detailed supporting calculations are also provided in Attachment N.

Emissions from the Janus Compressor Station will result from the TEG dehydration unit, natural gas combustion in the compressor engines, fuel gas heaters, microturbine generators, reboilers, and flashing, working, and breathing losses from the storage tanks. In addition, fugitive emissions from component leaks will result from the operation of the station. The methodologies employed in calculating emissions from these sources have been summarized below, with specific citations included in Attachment N.

- Compressor Engines: Potential emissions of nitrogen oxides (NO_x), CO, VOC, formaldehyde are calculated using factors provided by the engine and catalyst manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four stroke lean burn engines. Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CO₂ and CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.
- > Reboiler and Fuel Gas Heater: Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas combustion equipment. These calculations assume a site-specific heat content. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.
- Microturbine Generator: Potential emissions of NO_X, CO, VOC, methane, and CO₂ are calculated using manufacturer's emission data. Emissions of all other criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas internal combustion engines. These calculations use a site specific heat content.
- > TEG Dehydration Units: Potential emissions of HAPs, VOC, and methane from the dehydration units are calculated using GRI-GLYCalc. Emissions of other criteria pollutants are calculated for natural gas combustion in the flare using U.S. EPA's AP-42 factors for external combustion of natural gas. Greenhouse gas emissions from combustion in the flare are calculated according to the procedures in 40 CFR 98 Subpart C.
- Storage Tanks: Working, standing, and flash loss emissions of VOC and HAPs from the produced fluids storage tanks are calculated using E&P Tank v2.0. Liquid loading emissions are calculated using EPA AP-42 emission factors.
- Fugitive Emissions: Emissions from fugitive equipment leaks are calculated using published EPA emission factors and 40 CFR Part 98, Subpart W emission factors. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented during each event. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions.

The WVDEP permit application forms contained in this application include all applicable R13 application forms including the required attachments.

WFST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 Www.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)				
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO CONSTRUCTION DODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FAC	ADMINISTRATIVE AMENDMENT IMINOR MODIFIC SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISI INFORMATION AS ATTACHMENT S TO THIS APPLICATION	CATION ON			
	Revision Guidance" in order to determine your Title V Revision optic bility to operate with the changes requested in this Permit Application				
Secti	ion I. General				
1. Name of applicant (as registered with the WV Secretary EQT Gathering, LLC	/ of State's Office): 2. Federal Employer ID No. (FEIN): 20-2752042				
3. Name of facility (if different from above):	4. The applicant is the:				
Janus Station		тн			
5A. Applicant's mailing address: 5B. Facility's present physical address: 625 Liberty Avenue, Suite 1700 Off Left Fork Run Road Pittsburgh, PA 15222 Doddridge County, WV					
 If YES, provide a copy of the Certificate of Incorporation change amendments or other Business Registration Certificate of the component of the co	 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the	ne name of parent corporation: EQT Corporation				
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Applicant owns site If NO, you are not eligible for a permit for this source. 					
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 10. North American Industry Classification System (NAICS) code for the facility: 211111 					
11A. DAQ Plant ID No. (for existing facilities only): -	11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):				
All of the required forms and additional information can be for	und under the Permitting Section of DAQ's website, or requested by	v phone.			

12A.							
- For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the							
present location of the facility from the nearest state road;							
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 							
Turn south off of RT 50 at MM 50.5 onto Arnolds Creek Rd.(Rt 11). Bear left in 0.7 miles onto Left Fork Run Rd. (RT 11/4). Turn right in 0.9 miles onto station road and proceed 0.9 miles up the hill to the Janus Station.							
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:					
	West Union	Doddridge					
12.E. UTM Northing (KM): 4,345.400	12F. UTM Easting (KM): 516.767	12G. UTM Zone: 17					
13. Briefly describe the proposed change(s) at the facilit EQT is proposing to build a natural gas compressor stati dehydrators with reboilers and enclosed flares, microture tanks.	on that will consists of the following equ	ipment: Compressor engines, TEG are and miscellaneous storage					
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide and the provided mapping of the provide	-	14B. Date of anticipated Start-Up if a permit is granted: 3/1/2016					
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit					
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52							
16. Is demolition or physical renovation at an existing facility involved? YES NO							
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed							
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the					
proposed process (if known). A list of possible applica	able requirements is also included in Atta	achment S of this application					
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this					
information as Attachment D.							
Section II. Additional attachments and supporting documents.							
 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 							
20. Include a Table of Contents as the first page of your application package.							
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 							
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 							
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.							
23. Provide a Process Description as Attachment G.							
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 							

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					
24. Provide Material Safety Data Sheets	s (MSDS) for all materials process	ed, used or produced as Attachment H.			
 For chemical processes, provide a MS 	DS for each compound emitted to	the air.			
25. Fill out the Emission Units Table and	d provide it as Attachment I.				
26. Fill out the Emission Points Data Su	ummary Sheet (Table 1 and Tabl	le 2) and provide it as Attachment J.			
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	is Attachment K.			
28. Check all applicable Emissions Unit	Data Sheets listed below:				
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry			
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage			
Concrete Batch Plant	Incinerator	Facilities			
Grey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tanks			
General Emission Unit, specify Compre	essor Engines, Dehydration unit, I	Fuel Gas Heater, Microturbines			
Fill out and provide the Emissions Unit D	Data Sheet(s) as Attachment L.				
29. Check all applicable Air Pollution Co		<i>V</i> :			
Absorption Systems	Baghouse	S Flare – Tank Enclosed flare and			
Adsorption Systems		Dehy Flares			
Afterburner	Electrostatic Precipitate	or Mechanical Collector			
		U Wet Collecting System			
Other Collectors, specify Oxidation Cat	talyst				
Fill out and provide the Air Pollution Con					
30. Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N, or	r attach the calculations directly to the forms listed in			
	compliance with the proposed em	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit			
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
		lass I Legal Advertisement in a newspaper of general			
circulation in the area where the sour	ce is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and Example Legal			
Advertisement for details). Please s	submit the Affidavit of Publicatio	n as Attachment P immediately upon receipt.			
33. Business Confidentiality Claims.	Does this application include confid	dential information (per 45CSR31)?			
	⊠ NO				
segment claimed confidential, includir	If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.				
Section III. Certification of Information					
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:					
Authority of Corporation or Other Busin	ness Entity	Authority of Partnership			
Authority of Governmental Agency		Authority of Limited Partnership			
Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned 🖾 **Responsible Official** / 🗋 **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

	Prantita (DATE: 8/25/15 (Please use blue ink)
35B. Printed name of signee: Diana Charletta	~	35C. Title: Sr. Vice President
35D. E-mail: <u>dcharletta@eqt.com</u>	36E. Phone:	36F. FAX:
36A. Printed name of contact person (if differe	nt from above): Alex Bosiljevac	36B. Title: Environmental Coordinator
36C. E-mail: <u>abosiljevac@eqt.com</u>	36D. Phone: 412-395-3699	36E. FAX: 412-395-7027

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:					
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 				
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.					

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:	FOR AGENCY	USE ONL	Y - IF THIS IS A	TITLE V SOURCE:
--	------------	---------	------------------	-----------------

Forward 1 copy of the application to the Title V Permitting Group and:

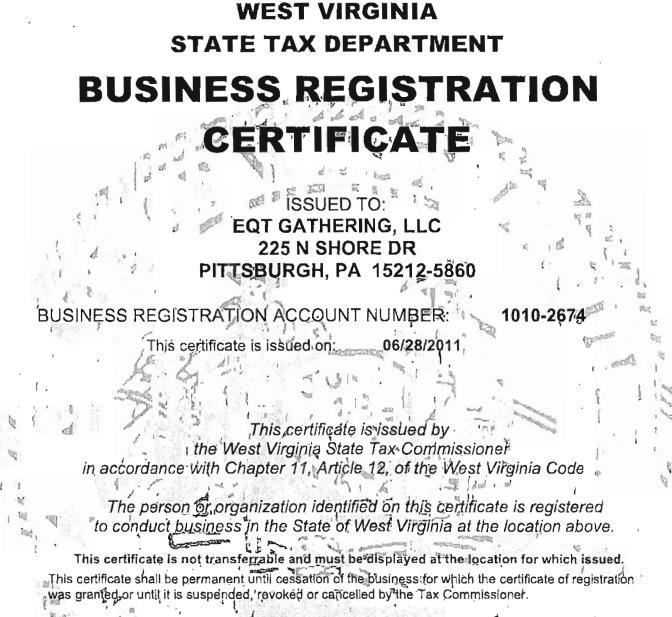
□ For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.


For Title V Significant Modifications processed in parallel with NSR Permit revision:

- NSR permit writer should notify a Title V permit writer of draft permit,
- □ Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

Current Business Certificate

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

all wit

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L2077129856

ATTACHMENT B

Мар

Figure 1 - Map of Janus Station

UTM Northing (KM): 4,345.400 UTM Easting (KM): 516.767 Elevation: 900 ft

ATTACHMENT C

Startup and Installation Schedule

ATTACHMENT C

Schedule of Planned Installation and Start-Up

Unit	Installation Schedule	Startup Schedule
Four (4) CAT3616	March 2016	Upon issuance of permit
Compressor Engines		
Two (2) 125 MMSCFD	March 2016	Upon issuance of permit
Dehydration Units with associated		
reboilers and enclosed flares		
Two (2) Fuel Gas Heaters	March 2016	Upon issuance of permit
(rated 1.15 & 0.77 MMBtu/hr)		
Two (2) 8,820 gallon Produced	March 2016	Upon issuance of permit
Fluids Storage Tanks with		
associated enclosed flare (rated 41		
MMBtu/hr)		
Twenty (22) Storage Tanks	March 2016	Upon issuance of permit
Five (5) Capstone Microturbines	March 2016	Upon issuance of permit
(each rated 200kWe)		

ATTACHMENT D

Regulatory Discussion

ATTACHMENT D - REGULATORY APPLICABILITY

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP R13A permit application forms. In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the Janus Compressor Station. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the Janus Compressor Station. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

Prevention of Significant Deterioration (PSD) Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The Janus Compressor Station is not a major source with respect to these programs since its potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.¹ Potential emissions of NO_X exceed 100 tpy. Therefore, the Janus Compressor Station will be a major source with respect to the Title V permit program and as such is required to submit a Title V operating permit application. EQT will submit the Title V operating permit application within one year of start-up of the facility.

New Source Performance Standards

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

¹ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs .

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the Janus Compressor Station.

NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m3 (~19,813 gallons). All of the proposed storage tanks at the Janus Compressor Station have a capacity of 19,000 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the Janus Compressor Station.

NSPS Subparts IIII - Stationary Compression Ignition Internal Combustion Engines

This subpart applies to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines. The Janus Compressor Station will not have any compression ignition internal combustion engine, and therefore the requirements of this subpart do not apply.

NSPS Subparts JJJJ - Stationary Spark Ignition Internal Combustion Engines

NSPS Subpart JJJJ affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the manufacture date for new engines. The applicability dates for new engines range from July 1, 2007 to January 1, 2009, depending upon the engine horsepower (hp) and application.

40 CFR §60.4230(a)(4) states:

Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500-hp (except lean burn engines with a maximum engine power greater than or equal to 500-hp and less than 1,350-hp);
(ii) On or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500-hp and less than 1,350-hp;

(iii) On or after July 1, 2008, for engines with a maximum engine power less than 500-hp; or (iv) On or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 kW (25hp).

The compressor engines proposed for installation at the Janus Compressor Station are four stroke lean burn engines (each rated at 5,350 HP) that were manufactured after July 1, 2007, and therefore NSPS JJJJ is applicable. Based on the engine manufacturer's specifications and the specifications for the associated catalyst, the engine complies with the emissions standards contain in 40 CFR §60.4233(e). EQT will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243(b)(2) (maintenance plan/records and performance testing frequency) for non-certified affected SI ICE at the facility. Initial notification of construction commencement will be submitted as required in 40 CFR §60.7(a)(1) and §60.4245(c), and performance testing results will be reported as required in 40 CFR §60.4245(d).

NSPS Subparts KKKK - Stationary Combustion Turbines

This subpart applies to owners, and operators of stationary combustion turbines. The Janus Compressor Station will have microturbines. These microturbines are not subject to NSPS Subpart KKKK since the maximum rated heat input

of each turbine is less than 10 MMBtu/hr, per 40 CFR 60.4305(a). It is important to note that the combined unit, called a C1000, is actually made of multiple units.

NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. This NSPS was published in the Federal Register on August 16, 2012, with an effective date of October 15, 2012. The list of potentially affected facilities includes:

- > Gas wells
- > Centrifugal compressors
- > Reciprocating compressors
- Pneumatic controllers
- Storage vessels
- > Equipment (as defined in §60.5430) located at onshore natural gas processing plants
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells

The Janus Compressor Station does not include gas wells or centrifugal compressors, therefore, the only potentially applicable requirements are those for reciprocating compressors, storage vessels, and pneumatic controllers. Rule applicability for each of these affected categories is discussed below.

<u>Reciprocating Compressors</u>- 40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. EQT will comply with this requirement for the proposed compressors.

<u>Storage Vessels</u> – EQT is proposing to install two (2) produced fluids storage tanks at the Janus Compressor Station. Potential VOC emissions from each of the produced fluid storage tanks are less than 6 tpy. As such, these tanks will not be a storage vessel affected facilities under this rule.

<u>Pneumatic Controllers</u> – The pneumatic controllers were ordered and installed after August 23, 2011 and are therefore potentially subject to NSPS 0000. Per 60.5365(d)(2), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000.

Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas operations (Subpart OOOO), internal combustion engines (Subparts IIII and JJJJ), and associated equipment (Subparts D-Dc, KKKK, and K-Kb), the applicability of a particular NSPS to the Janus Compressor Station can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to natural gas compressor stations.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The Janus Compressor Station will be an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act

Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 HHH Natural Gas Transmission and Storage Facilities
- > 40 CFR Part 63 YYYY Stationary Combustion Turbines
- > 40 CFR Part 63 Subpart ZZZZ- Stationary Reciprocating Internal Combustion Engines (RICE)
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This subpart applies to affected emission points that are located at facilities that are major and area sources of HAP and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this subpart, natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present.

The proposed Janus Compressor Station will be an area source of HAP emissions. The station will processes natural gas in its glycol dehydrator prior to the point of custody transfer; therefore, the provisions of NESHAP Subpart HH apply to the Janus Compressor Station. The benzene emissions from the glycol dehydrator vents are less than 0.90 megagrams per year (1 tpy), therefore, the Janus Compressor Station is exempt from the requirements of NESHAP Subpart HH pursuant to 40 CFR §63.764(e)(1)(ii), except for the requirement to keep records of the actual average natural gas flow rate or actual average benzene emissions from the dehydrator, per 40 CFR §63.774(d)(1).

40 CFR 63 Subpart HHH - Natural Gas Transmission and Storage Facilities

This standard applies to such units at natural gas transmission and storage facilities that are major sources of HAP emissions located downstream of the point of custody transfer (after processing and/or treatment in the production sector), but upstream of the distribution sector. The Janus Compressor Station is not a transmission facility; therefore, the provisions of NESHAP Subpart HHH do not apply to the Janus Compressor Station

40 CFR 63 Subpart YYYY - Stationary Combustion Turbines

Stationary combustion turbines located at facilities that are major sources of HAPs are potentially subject to Subpart YYYY, NESHAP for Stationary Combustion Turbines. Subpart YYYY establishes emissions and operating limitations for lean premix gas-fired, lean premix oil-fired, diffusion flame gas-fired and diffusion flame oil-fired stationary combustion turbines. The Janus Compressor Station is minor source of HAP and therefore is not subject to the requirements of this subpart.

40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The Janus Compressor Station is a minor (area) source of hazardous air pollutants and the four (4) proposed compressor engines are considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ.

40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers (Area Source Boiler MACT)

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types. The proposed fuel heaters at the Janus Compressor Station are natural gas-fired heaters and are specifically exempt from this subpart. Therefore, the requirements of this subpart will not apply.

West Virginia SIP Regulations

The Janus Compressor Station is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 2: Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The reboilers and fuel gas heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from this unit shall not exceed 10 percent based on a six minute block average. Per 45 CSR 2-11, units less than 10 MMBtu/hr are exempt from the PM emission requirements in this rule.

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The Janus Compressor Station is generally subject to this requirement. However, due to the nature of the process at the station, production of objectionable odor from the compressor station during normal operation is unlikely.

45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The proposed dehydrator enclosed flares, and Tank enclosed flare are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

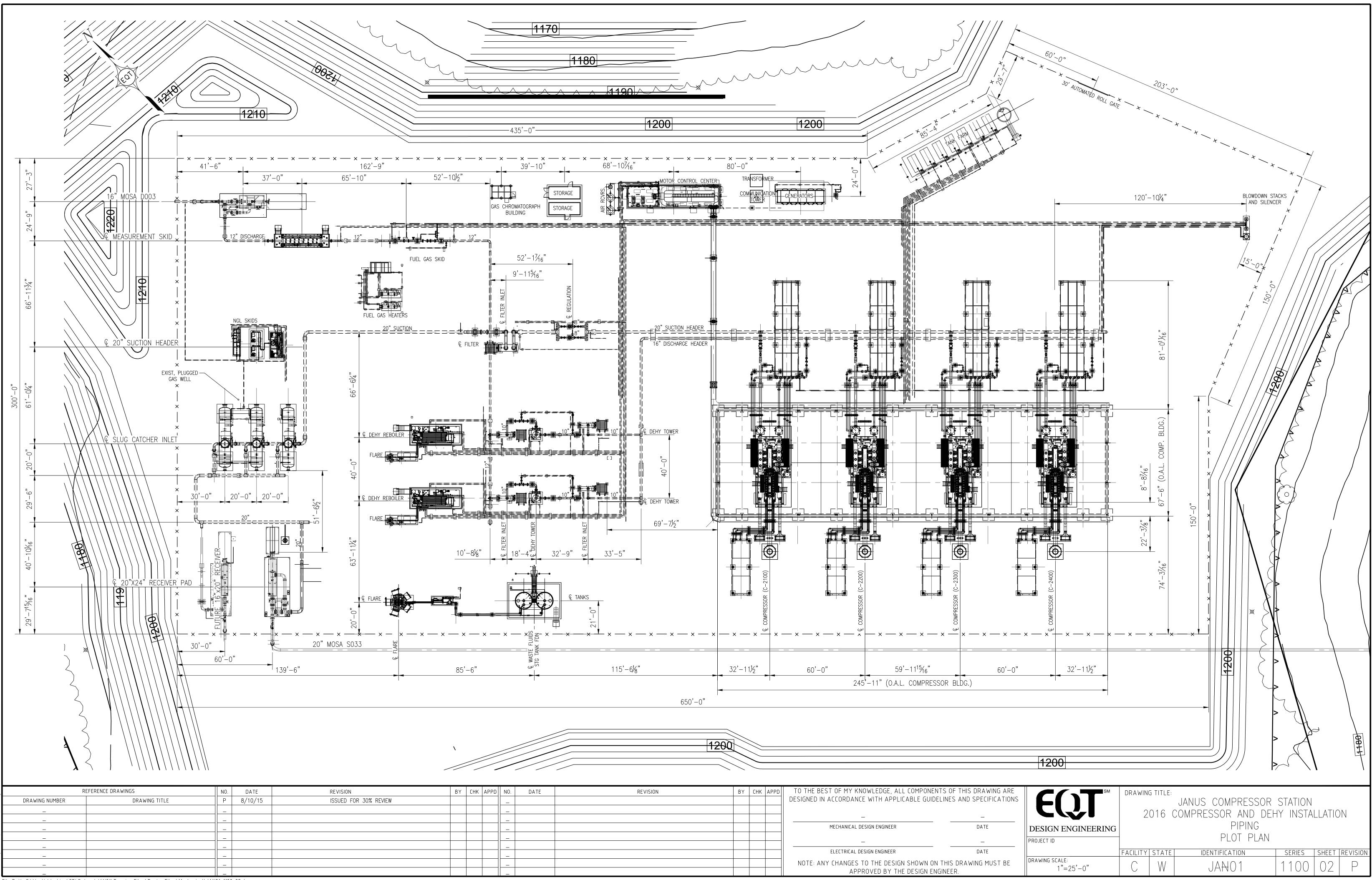
45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the Janus Compressor Station (discussed earlier in this attachment), EQT will be complying with 45 CSR 16.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

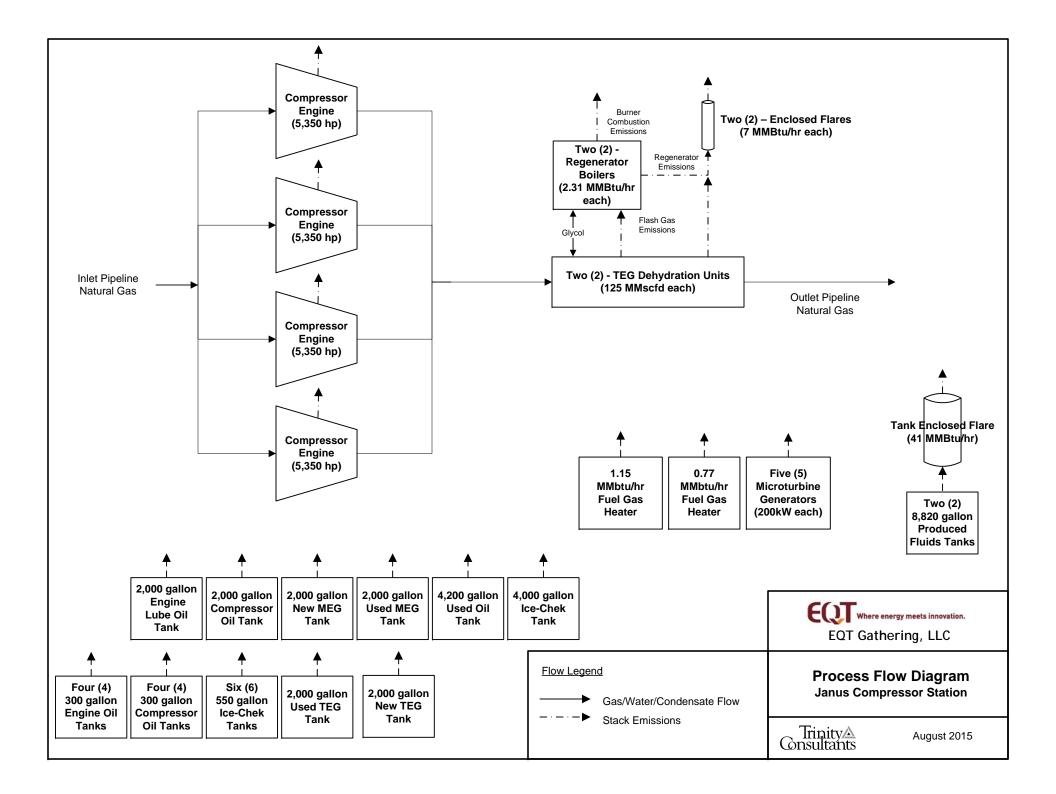

Due to the nature of the activities at the Janus Station it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the Janus Compressor Station is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply.

ATTACHMENT E

Plot Plan


File Path: C:\Vault Working\3D\Saturn\JAN01\Drawing Files\Design Files\Mechanical\JAN01-1100-02.dwg

1200

СНК	APPD	N0.	DATE	REVISION	ΒY	СНК	APPD	
		_						DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AN
		_						
		_						
		_						MECHANICAL DESIGN ENGINEER
		_						
		_						
		_						ELECTRICAL DESIGN ENGINEER
		_						NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRA
		_						APPROVED BY THE DESIGN ENGINEER.

ATTACHMENT F

Detailed Process Flow Diagram

ATTACHMENT G

Process Description

ATTACHMENT G - PROCESS DESCRIPTION

Natural gas enters the station via the gathering pipeline system and is compressed using one of the four (4) natural gas-fired compressor engines (identified as ENG-1 to ENG-4, each rated at 5,350 hp). The compressed natural gas stream is then processed through the triethylene glycol (TEG) dehydration units (with associated reboilers). The dehydration units will introduce TEG to the gas stream in a contact tower to absorb water vapor from the gas to a level not exceeding 7 pounds per million standard cubic feet (lb/MMscf). The TEG is then sent to the natural gas-fired reboilers, each rated at 2.3 MMBtu/hr heat input. The water is evaporated from the TEG in the reboiler and discharged, and the glycol is then sent back to the contact tower for reuse. Each dehydration unit is equipped with an enclosed flare which will control emissions from the dehydration still vent and emissions from the flash tank. The natural gas stream from the contact tower flows into the pipeline to be transported further along the pipeline system. The station is also equipped with two (2) fuel gas heaters, two (2) produced fluids storage tanks, and twenty two (22) miscellaneous storage tanks. Once the tanks are filled, the contents are loaded into trucks for transport. Electricity at the station will be provided by the five (5) Capstone microturbine generators.

A process flow diagram is included as Attachment F.

ATTACHMENT I

Emission Units Table

		Attach	ment I						
Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)									
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴			
ENG-001	ENG-001	Caterpillar G3616 Compressor Engine #1	2016	5,350 HP	New	Ox. Cat. (C1)			
ENG-002	ENG-002	Caterpillar G3616 Compressor Engine #2	2016	5,350 HP	New	Ox. Cat. (C2)			
ENG-003	ENG-003	Caterpillar G3616 Compressor Engine #3	2016	5,350 HP	New	Ox. Cat. (C3)			
ENG-004	ENG-004	Caterpillar G3616 Compressor Engine #4	2016	5,350 HP	New	Ox. Cat. (C4)			
DEHY-001	FLARE-001	Dehydration Unit #1	2016	125 MMscfd	New	Enclosed Flare (FLARE-001)			
DEHY-002	FLARE-002	Dehydration Unit #2	2016	125 MMscfd	New	Enclosed Flare (FLARE-002)			
RB-001	RB-001	Dehydration Unit Reboiler #1	2016	2.31 MMBtu/hr	New	N/A			
RB-002	RB-002	Dehydration Unit Reboiler #2	2016	2.31 MMBtu/hr	New	N/A			
EG-001	EG-001	Microturbine Generator	2016	200 KW	New	N/A			
EG-002	EG-002	Microturbine Generator	2016	200 KW	New	N/A			
EG-003	EG-003	Microturbine Generator	2016	200 KW	New	N/A			
EG-004	EG-004	Microturbine Generator	2016	200 KW	New	N/A			
EG-005	EG-005	Microturbine Generator	2016	200 KW	New	N/A			
HTR-1	HTR-1	Fuel Gas Heater	2016	1.15 MMBtu/hr	New	N/A			
HTR-2	HTR-2	Fuel Gas Heater	2016	0.77 MMBtu/hr	New	N/A			
T-001	FLARE-003	Produced Fluids Tank	2016	8,820 gallons	New	Enclosed Flare (FLARE-003)			
T-002	FLARE-003	Produced Fluids Tank	2016	8,820 gallons	New	Enclosed Flare (FLARE-003)			
T-003	T-003	Engine Lube Oil Tank	2016	2,000 gallons	New	N/A			
T-004	T-004	Compressor Oil Tank	2016	2,000 gallons	New	N/A			
T-005	T-005	New MEG Tank	2016	2,000 gallons	New	N//A			
T-006	T-006	Used MEG Tank	2016	2,000 gallons	New	N/A			
T-007	T-007	Used Oil Tank	2016	4,200 gallons	New	N/A			
T-008	T-008	Ice-chek Tank	2016	4,000 gallons	New	N/A			
T-009	T-009	Engine Oil Tank	2016	300 gallons	New	N/A			
T-010	T-010	Engine Oil Tank	2016	300 gallons	New	N/A			
T-011	T-011	Engine Oil Tank	2016	300 gallons	New	N/A			
T-012	T-012	Engine Oil Tank	2016	300 gallons	New	N/A			

T-013	T-013	Compressor Oil Tank	2016	300 gallons	New	N/A
T-014	T-014	Compressor Oil Tank	2016	300 gallons	New	N/A
T-015	T-015	Compressor Oil Tank	2016	300 gallons	New	N/A
T-016	T-016	Compressor Oil Tank	2016	300 gallons	New	N/A
T-017	T-017	Ice-chek Tank	2016	550 gallons	New	N/A
T-018	T-018	Ice-chek Tank	2016	550 gallons	New	N/A
T-019	T-019	Ice-chek Tank	2016	550 gallons	New	N/A
T-020	T-020	Ice-chek Tank	2016	550 gallons	New	N/A
T-021	T-021	Ice-chek Tank	2016	550 gallons	New	N/A
T-022	T-022	Ice-chek Tank	2016	550 gallons	New	N/A
T-023	T-023	New TEG Tank	2016	2,000 gallons	New	N//A
T-024	T-024	Used TEG Tank	2016	2,000 gallons	New	N/A
FLARE-001	FLARE-001	Dehy Enclosed Flare #1	2016	7 MMBtu/hr	New	N/A
FLARE-002	FLARE-002	Dehy Enclosed Flare #2	2016	7 MMBtu/hr	New	N/A
FLARE-003	FLARE-003	Tank Enclosed Flare #3	2016	41 MMBtu/hr	New	N/A
L1	L1	Liquid Loading	2016	210,000 gal/yr	New	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page _____ of _____

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Т	able 1:	Emissions Da	ta						
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Throug (Must ma	n Unit Vented h This Point atch Emission le & Plot Plan)	De (Must Emissio	on Control vice <i>match</i> on Units Plot Plan)	Emiss (che	Emission Unit (chemical processes only)Pollutants - Chemical Name/CAS3Potential Uncontrolled Emissions 4Controlled Emissions 5Fe		Emission Form or Phase (At exit	Est. Method Used ⁶	ethod Concentration 7				
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
ENG-001 to ENG-004 (Each unit)	Upward Vertical stack	ENG-001 to ENG-004	Compressor Engine (Each unit)	C-1	Oxidation Catalyst	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	5.90 29.13 8.85 0.02 0.003 3.12 5,741	25.83 127.60 38.75 0.10 0.01 13.67 25,144	5.90 2.04 3.93 0.02 0.003 1.00 5,741	25.83 8.93 17.23 0.10 0.01 4.38 25,144	Gas/Vapor	$\begin{array}{c} O^A \\ O^A \\ O^A \\ O^B \\ O^B \\ O^{A,B} \\ O^{A,C} \end{array}$	
FLARE-001 & FLARE-002 (Each unit)	Upward Vertical Stack	DEHY- 001 & DEHY- 002	Dehydration Unit (Each Unit)	FLARE- 001 to FLARE - 002	Enclosed Flares	NA	NA	VOC HAP Benzene	77.61 33.76 4.11	339.92 147.88 18.02	1.55 0.68 0.08	6.80 2.96 0.36	Gas/Vapor	OD	
RB-001 & RB-002 (Each unit)	Upward Vertical Stack	RB-001 & RB-002	Reboiler	NA	NA	NA	NA	NOx CO PM/PM10/PM2.5 SO2 VOC CO2e	0.19 0.16 0.01 <0.01 0.01 271	$\begin{array}{c} 0.83 \\ 0.69 \\ 0.06 \\ < 0.01 \\ 0.05 \\ 1,185 \end{array}$	0.19 0.16 0.01 <0.01 0.01 271	$\begin{array}{c} 0.83 \\ 0.69 \\ 0.06 \\ < 0.01 \\ 0.05 \\ 1,185 \end{array}$	Gas/Vapor	O^{F} O^{F} O^{F} O^{F} O^{C}	
FLARE-001 & FLARE-002 (Each unit)	Upward Vertical Stack	FLARE- 001 & FLARE- 002	Dehy Enclosed Flares (Each unit)	NA	NA	NA	NA	NOx CO PM/PM10/PM2.5 SO2 CO2e	0.58 0.49 0.04 <0.01 830	2.53 2.13 0.19 0.02 3,637	0.58 0.49 0.04 <0.01 830	2.53 2.13 0.19 0.02 3,637	Gas/Vapor	O^{F} O^{F} O^{F} O^{C}	
FLARE-003	Upward Vertical Stack	T-001 & T-002 (Each unit)	Produced Fluids Storage Tank	NA	NA	NA	NA	VOC HAP	0.96 0.02	4.19 0.10	0.05 0.001	0.21 0.01	Gas/Vapor	O ^E	
FLARE-003	Upward Vertical Stack	FLARE- 003	Tank Enclosed Flare	NA	NA	NA	NA	NOx CO PM/PM10 SO2 CO2e	3.35 2.82 0.25 0.02 4,816	14.69 12.34 1.12 0.09 21,095	3.35 2.82 0.25 0.02 4,816	14.69 12.34 1.12 0.09 21,095	Gas/Vapor	O^{F} O^{F} O^{F} O^{C}	
L1	Fugitive	L1	Liquid Loading	NA	NA	NA	NA	VOC	NA	0.09	NA	0.09	Gas/Vapor	O^{H}	

HTR-1	Upward Vertical stack	HTR-1	Fuel Gas Heater	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 CO2e	0.09 0.08 0.01 <0.01 0.01 135	$\begin{array}{c} 0.41 \\ 0.35 \\ 0.02 \\ < 0.01 \\ 0.03 \\ 590 \end{array}$	0.09 0.08 0.01 <0.01 0.01 135	$\begin{array}{c} 0.41 \\ 0.35 \\ 0.02 \\ < 0.01 \\ 0.03 \\ 590 \end{array}$	Gas/Vapor	O^{F} O^{F} O^{C}	
HTR-2	Upward Vertical stack	HTR-2	Fuel Gas Heater	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 CO2e	0.06 0.05 <0.01 <0.01 <0.01 90	0.28 0.23 <0.01 <0.01 <0.01 395	$\begin{array}{c} 0.06\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ 90 \end{array}$	$\begin{array}{c} 0.28 \\ 0.23 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 395 \end{array}$	Gas/Vapor	$O^{\rm F}$ $O^{\rm F}$ $O^{\rm C}$	
EG-001 to EG-005 (Combined)	Upward Vertical stack	EG-001 to EG- 005	Microturbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	$\begin{array}{c} 0.40 \\ 1.10 \\ 0.10 \\ 0.04 \\ 0.08 \\ 0.01 \\ 1,331 \end{array}$	1.75 4.82 0.44 0.17 0.33 0.05 5,831	$\begin{array}{c} 0.40 \\ 1.10 \\ 0.10 \\ 0.04 \\ 0.08 \\ 0.01 \\ 1,331 \end{array}$	1.75 4.82 0.44 0.17 0.33 0.05 5,831	Gas/Vapor	$\begin{array}{c} O^A \\ O^A \\ O^A \\ O^G \\ O^G \\ O^G \\ O^A, C \end{array}$	

A- Manufacturer's specific pollutant emission Factor

B- AP-42 Section 3.2, Table 3.2-2 "Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines" Supplement F, August 2000, except for Formaldehyde which is manufacturer's spec.

C- 40 CFR 98, Subpart C for natural gas fired combustion.

D- GRI-GLYCalc

E- API E&PTanks

F- AP-42 Section 1.4 Tables 1.4-1, 1.4-2 and 1.4-3, July 1998.

G- AP-42 Section 3.1 Table 3.1-2a

H- AP-42 Section 5.2 Table 5.2-1

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

	Table 2: Release Parameter Data									
Emission			Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)			
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting		

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes INO
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum P Controlled Em	Est. Method	
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA					
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}	0.05 0.01 <0.01	0.20 0.05 0.01	0.05 0.01 <0.01	0.20 0.05 0.01	Oc
Storage Pile Emissions	NA					
Loading/Unloading Operations	VOC	N/A	0.09	N/A	0.09	O ^B
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks (includes blowdowns and maintenance)	VOC HAP	N/A	12.01 0.51	N/A	12.01 0.51	O ^A
General Clean-up VOC Emissions	NA					
Other	NA					

A – Oil and Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, Table 2-4, November 1995, 40 CFR 98 Subpart W, and mass balance.

B- AP 42 Section 5.2.1

C – AP 42 Section 13.2.2.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emission Unit Data Sheet

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): ENG-001 to ENG-004

1. Name or type and model of proposed affected source:
Compressor Engine #1 – #4: Four (4) Caterpillar 3616 natural gas fired compressor engines equipped with oxidation catalyst.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Compresses natural gas to maintain pipeline pressure.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Internal combustion of natural gas.
* The identification number which appears here must correspond to the air pollution control

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion E		-					
(a) Type and	amount in ap	propriate units of f	ruel(s) to be bur	ned:			
Natural gas – 32	,160 scf/hr (e	ach engine), 281.7	7 MMscf/yr (eac	ch engine)			
(b) Chemical and ash:	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:						
Natural gas with	negligible H	₂ S and ash conten	t.				
(c) Theoretica	al combustion	air requirement (ACF/unit of fuel)	:			
22.9 scf/hr	@	60	°F and	14.7	psia.		
(d) Percent ex	(d) Percent excess air: Unknown						
(e) Type and	BTU/hr of bui	mers and all other	firing equipmer	nt planned to be	used:		
39.43 MMBtu/hr	spark ignitior	n reciprocating inte	ernal combustio	n engine.			
	roposed as a will be fired:	source of fuel, ide	entify supplier ar	nd seams and giv	ve sizing of the		
NA							
(g) Proposed	maximum de	sign heat input:	39.4	-3 ×	10 ⁶ BTU/hr.		
7. Projected ope	rating schedu	ıle:					
Hours/Day	24	Days/Week	7	Weeks/Year	52		

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 							
@	812	°F and		14.7 psia				
a.	NOx	5.90	lb/hr	grains/ACF				
b.	SO ₂	0.02	lb/hr	grains/ACF				
c.	со	29.13	lb/hr	grains/ACF				
d.	PM ₁₀	0.39	lb/hr	grains/ACF				
e.	Hydrocarbons		lb/hr	grains/ACF				
f.	VOCs	8.85	lb/hr	grains/ACF				
g.	Pb	NA	lb/hr	grains/ACF				
h.	Specify other(s)							
	Benzene	0.02	lb/hr	grains/ACF				
	Toluene	0.02	lb/hr	grains/ACF				
	Xylene	0.01	lb/hr	grains/ACF				
	Formaldehyde	2.36	lb/hr	grains/ACF				

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Repo	orting and Testing
Please propose monitoring, recordkeeping,	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
Replace the reciprocating compressor rod packing before	Maintain records of maintenance conducted on the engine
26,000 hours or 36 months from the date of the most	
recent rod packing element	Maintain documentation that the engine meets the emission standards of 40 CFR 60.4233(e)
Monitor the number of hours of operation for each reciprocating compressor	Maintain records of all notification submitted
	Maintain records of the date and time of each
	reciprocating compressor rod packing element
	Maintain records of the deviations in cases where the compressor was not operated in compliance with 60.5383
REPORTING	TESTING
Submission of an initial notification as required in 40 CFR 60.7(a)(1)	Initial performance test and subsequent performance testing every 8760 hours or every three years, whichever
Submit a copy of each performance test	comes first.
Submit an annual NSPS OOOO report one year from the initial annual report	
	I E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
	OPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	anno propoduros required by Manufacturer to
maintain warranty	nance procedures required by Manufacturer to
See attached manufacturer specification sheet	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): EG-001 to EG-005

1. Name or type and model of proposed affected source:
Natural Gas-fired combustion Capstone Microturbines (each rated at 200kW) – Consist of 5 identical units
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Electrical generation from natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
External combustion of natural gas

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applic	able):		
(a) Type and amount in ap	propriate units of fu	uel(s) to be burned:	
Natural gas – 9,297 scf/hr (to	otal)		
(b) Chemical analysis of pl and ash:	roposed fuel(s), exc	cluding coal, including ma	aximum percent sulfur
Natural gas with negligible H	I2S and ash content.		
(c) Theoretical combustion	n air requirement (A	CF/unit of fuel):	
Unknown @		°F and	psia.
(d) Percent excess air:	Unknown		
(e) Type and BTU/hr of bu	rners and all other	firing equipment planne	d to be used:
Five (5) 2.28 MMBtu/hr stati	ionary gas turbines		
(f) If coal is proposed as a coal as it will be fired:	source of fuel, ider	ntify supplier and seams	and give sizing of the
NA			
(g) Proposed maximum de	sign heat input:	2.28 (each)	× 10 ⁶ BTU/hr.
7. Projected operating sched	ule:		
Hours/Day 24	Days/Week	7 Weeks/Y	ear 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:								
@	Unknown	°F and		psia					
a.	NOx	0.40 (total)	lb/hr	grains/ACF					
b.	SO ₂	0.04 (total)	lb/hr	grains/ACF					
c.	со	1.10 (total)	lb/hr	grains/ACF					
d.	PM ₁₀	0.08 (total)	lb/hr	grains/ACF					
e.	Hydrocarbons		lb/hr	grains/ACF					
f.	VOCs	0.10 (total)	lb/hr	grains/ACF					
g.	Pb		lb/hr	grains/ACF					
h.	Specify other(s)								
	НАР	0.01 (total)	lb/hr	grains/ACF					
			lb/hr	grains/ACF					
			lb/hr	grains/ACF					
			lb/hr	grains/ACF					

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Report Please propose monitoring, recordkeeping, with the proposed operating parameters. compliance with the proposed emissions lin MONITORING None 	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING	TESTING
None	None
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty None.	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): DEHY-001 to DEHY-002

1. Name or type and model of proposed affected source:
125 MMSCFD dehydration unit with 2.31 MMBtu/hr heat input rated reboiler (each)
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
125 million standard cubic feet per day of natural gas, each
125 minor standard cubic feet per day of natural gas, caen
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce a material – removes water from wet natural gas
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
External combustion of natural gas in reboiler

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applic	able):			
(a) Type and amount in ap	propriate units of	fuel(s) to be bu	irned:	
Reboiler - Natural gas – 1,88	4 scfh			
(b) Chemical analysis of pi and ash:	oposed fuel(s), ex	cluding coal, in	cluding maxim	ium percent sulfur
Natural gas with negligible H	I2S and ash conten	t.		
(c) Theoretical combustion	air requirement (ACF/unit of fue	el):	
Unknown @		°F and		psia.
(d) Percent excess air: I	Unknown			
(e) Type and BTU/hr of bu	rners and all other	r firing equipme	ent planned to	be used:
natural gas fired external combustion heater – 2.31 MMbtu/hr input rating				
(f) If coal is proposed as a coal as it will be fired:	source of fuel, ide	entify supplier a	and seams and	I give sizing of the
NA				
(g) Proposed maximum de	sign heat input:	2	31	× 10 ⁶ BTU/hr.
7. Projected operating sched	ule:			
Hours/Day 24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@	Unknown	°F and		psia
a.	NOx	0.19	lb/hr	grains/ACF
b.	SO ₂	<0.01	lb/hr	grains/ACF
c.	со	0.16	lb/hr	grains/ACF
d.	PM ₁₀	0.01	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	77.61	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	HAPs	33.76	lb/hr	grains/ACF
	Benzene	4.11	lb/hr	grains/ACF
	Toluene	11.02	lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate		
REPORTING None.	TESTING		
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE			

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): HTR-1

1. Name or type and model of proposed affected source:
Heater - Natural gas fired fuel gas heater
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
NA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Thermal generation from natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
5. Give chemical reactions, il applicable, that will be involved in the generation of all polititants.
External combustion of natural gas

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applied	cable):			
(a) Type and amount in a	(a) Type and amount in appropriate units of fuel(s) to be burned:			
Natural gas – 938 scfh				
(b) Chemical analysis of p and ash:	roposed fuel(s), exc	cluding coal, ind	cluding maxim	um percent sulfur
Natural gas with negligible I	H2S and ash content	•		
(c) Theoretical combustio	n air requirement (A	ACF/unit of fue	l):	
Unknown @		°F and		psia.
(d) Percent excess air:	Unknown			
(e) Type and BTU/hr of bu	urners and all other	firing equipme	nt planned to b	be used:
1.15 MMBtu/hr, natural gas fired external combustion heater				
(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:				
NA				
(g) Proposed maximum d	esign heat input:	1.1	5	× 10 ⁶ BTU/hr.
7. Projected operating sched	lule:			
Hours/Day 24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@	Unknown	°F and		psia
a.	NOx	0.09	lb/hr	grains/ACF
b.	SO ₂	<0.01	lb/hr	grains/ACF
c.	со	0.08	lb/hr	grains/ACF
d.	PM ₁₀	0.01	lb/hr	grains/ACF
e.	Hydrocarbons	0.01	lb/hr	grains/ACF
f.	VOCs	0.01	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	HAPs	<0.01	lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	ng, and reporting in order to demonstrate arameters. Please propose testing in order to		
REPORTING	TESTING		
None	None		
	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PR THE MONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY		
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.			
TESTING. PLEASE DESCRIBE ANY PROPOSEQUIPMENT/AIR POLLUTION CONTROL DEVICE.	SED EMISSIONS TESTING FOR THIS PROCESS		
	nance procedures required by Manufacturer to		
maintain warranty None.			

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): HTR-2

1. Name or type and model of proposed affected source:
Heater - Natural gas fired fuel gas heater
Treater Tratarial gas med a gas nearer
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to
be made to this source, clearly indicated the change(s). Provide a narrative description of
all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
4 Name(a) and maximum amount of propagad material(a) produced per bour
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Thermal generation from natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
External combustion of natural gas
External combustion of natural gas

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applicable):			
(a) Type and amount in appropriate units of fuel(s	s) to be burned:		
Natural gas – 628 scfh			
(b) Chemical analysis of proposed fuel(s), excludi and ash:	ng coal, including maxir	num percent sulfur	
Natural gas with negligible H ₂ S and ash content.			
(c) Theoretical combustion air requirement (ACF/	'unit of fuel):		
Unknown @	°F and	psia.	
(d) Percent excess air: Unknown			
(e) Type and BTU/hr of burners and all other firing	g equipment planned to	be used:	
0.77 MMBtu/hr, natural gas fired external combustion heater			
(f) If coal is proposed as a source of fuel, identify coal as it will be fired:	supplier and seams an	d give sizing of the	
NA			
(g) Proposed maximum design heat input:	0.77	× 10 ⁶ BTU/hr.	
7. Projected operating schedule:			
Hours/Day 24 Days/Week	7 Weeks/Year	52	

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@	Unknown	°F and		psia
a.	NOx	0.06	lb/hr	grains/ACF
b.	SO ₂	<0.01	lb/hr	grains/ACF
c.	со	0.05	lb/hr	grains/ACF
d.	PM ₁₀	0.01	lb/hr	grains/ACF
e.	Hydrocarbons	0.01	lb/hr	grains/ACF
f.	VOCs	0.01	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	HAPs	<0.01	lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	ng, and reporting in order to demonstrate arameters. Please propose testing in order to
REPORTING	TESTING
None	None
	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PR THE MONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSEQUIPMENT/AIR POLLUTION CONTROL DEVICE.	SED EMISSIONS TESTING FOR THIS PROCESS
	nance procedures required by Manufacturer to
maintain warranty None.	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Janus Compressor Station	Produced Fluids Storage Tanks
3. Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>)	 Emission Point Identification No. (as assigned on Equipment List Form)
T-001 & T-002	FLARE-003
5. Date of Commencement of Construction (for existing	tanks)
6. Type of change 🛛 New Construction 🗌 🗎	New Stored Material Other Tank Modification
7. Description of Tank Modification (if applicable)	
Not Applicable	
74. Doos the tank have more than and mode of experience	n? 🗌 Yes 🛛 No
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
completed for each mode).	
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
None	
II. TANK INFORM	ATION (required)
 Design Capacity (specify barrels or gallons). Use height. 	the internal cross-sectional area multiplied by internal
	02: 210 bbl (each)
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
~10	~15
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
~15	~ 10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
~15	~5
	s also known as "working volume" and considers design
liquid levels and overflow valve heights.	
210	bbl (each)

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
210,000 (Total)	575 (Total)			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
24	(Total)			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method Submerged	Splash Dottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems Does Not Apply			
17A. Volume Expansion Capacity of System (gal) TBD	17B. Number of transfers into system per year TBD			
18. Type of tank (check all that apply):	100			
	flat roofdome roofdome roof			
External Floating Roofpontoon roof	double deck roof			
Domed External (or Covered) Floating Roof				
Internal Floating Roofvertical column su	pportself-supporting			
Variable Vapor Space lifter roof	diaphragm			
Pressurizedsphericalcylindrical				
Underground				
Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate	d rivets 🛛 Other (describe) Welded			
20A. Shell Color Gray 20B. Roof Colo	r Gray 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):				
🗌 No Rust 🔄 Light Rust 🔄 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated?				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): -0.30 to 0.75 psi	g			
24. Complete the following section for Vertical Fixed Ro	of Tanks 🛛 Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft) 0.0625				
25. Complete the following section for Floating Roof Tail	nks 🛛 Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resil	•			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shie	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting:						
ACCESS HATCH						
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
		JGE FLOAT WELL				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
	COLUM	N WELL	1			
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE			
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:			
	•					
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:			
FIF COLUMIN – SLIDING COVER, G	ASKETED.		SLIDING COVER, UNGASKETED.			
	GAUGE-HATCH	SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
		HANGER WELL				
			SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED.	(10% OPEN AREA)			
	- - 		- - -			
	VACUUM	BREAKER				
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
		·				
		VENT				
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
	DECK DRAIN (3-I	INCH DIAMETER)				
OPEN:	22010010101010	90% CLOSED:				
	STUB	DRAIN				
1-INCH DIAMETER:						
UTHER (DESCH	NDE, ATTACH ADL	DITIONAL PAGES I	F NECESSARI)			

26. Complete the following section for Internal	Floating Roof Tanks	🛛 Does Not Apply	y
26A. Deck Type: Deck Type: We	elded		
26B. For Bolted decks, provide deck constru	uction:		
26C. Deck seam:			
 Continuous sheet construction 5 feet w Continuous sheet construction 6 feet w 			
Continuous sheet construction 7 feet w			
\Box Continuous sheet construction 5 × 7.5 f			
Continuous sheet construction 5 × 12 fe	eet wide		
	1		
26D. Deck seam length (ft)	26E. A	rea of deck (ft ²)	
For column supported tanks:	26G. D	ameter of each column	
26F. Number of columns:			
	<u>, , , , , , , , , , , , , , , , , , , </u>		ets)
 Provide the city and state on which the dat Huntington, WV 	a in this section are b	ased.	
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°	E) 65 3		
30. Annual Average Minimum Temperature (°F			
	•		
31. Average Wind Speed (miles/hr)	6.6		
32. Annual Average Solar Insulation Factor (B		76	
33. Atmospheric Pressure (psia)		33	
V. LIQUID INFORMATION		TANKS Summary Shee	ets)
34. Average daily temperature range of bulk lice	-		
34A. Minimum (°F)	34B. M	aximum (°F) 61.79	
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. M	aximum (psig)	
36A. Minimum Liquid Surface Temperature	(°F) 36B. C	orresponding Vapor Pre	essure (psia)
37A. Average Liquid Surface Temperature (⁷ °F) 37B. C	orresponding Vapor Pre	accura (paia)
56.74		orresponding vapor Fre	essure (psia)
38A. Maximum Liquid Surface Temperature	e (°F) 38B. C	orresponding Vapor Pre	essure (psia)
61.79			
39. Provide the following for each liquid or gas	to be stored in tank.	Add additional pages if	necessary.
39A. Material Name or Composition	Produced Fluids		
39B. CAS Number	TBD		
39C. Liquid Density (lb/gal)	TBD		
39D. Liquid Molecular Weight (lb/lb-mole)	TBD		
39E. Vapor Molecular Weight (lb/lb-mole)	36.25		

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia)		TB TB					
Months Storage per Y 39H. From	ear						
39I. To							
	VI. EMISSIONS AI			E DATA (required)			
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☑ Does Not Apply □ Carbon Adsorption ¹ □ Condenser ¹ □ Condenser ¹ ☑ Conservation Vent (psig) – Enardo Valve Vacuum Setting 0.30 Pressure Setting 0.75 □ Emergency Relief Valve (psig) □ Inert Gas Blanket of □ Insulation of Tank with □ Liquid Absorption (scrubber) ¹ □ Refrigeration of Tank □ Vent to Incinerator ¹ □ Other ¹ (describe):							
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 							
41. Expected Emissio	n Rate (submit Test Dat	a or Calcula	tions here	or elsewhere in the app	lication).		
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)	a or Calcula [.] Working Amount		or elsewhere in the app Annual Loss (lb/yr)	lication). Estimation Method ¹		
Material Name &	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			
Material Name & CAS No. See attached Emissions	Breathing Loss	Working	g Loss	Annual Loss			

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form):							
1. Loading Area Nar	1. Loading Area Name: Liquid Loading						
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):							
	Marine Vessels	s □ Ra	il Tank Cars	🖄 Tank Trucks			
3. Loading Rack or	Fransfer Point	Data:					
Number of pumps	6	1					
Number of liquids	loaded	1					
Maximum number	r of marine	1					
vessels, tank truc							
and/or drums load	ling at one tim	e					
 Does ballasting on □ Yes 	of marine vesse		bading area? bes not apply				
5. Describe cleaning transfer point:	g location, con	npounds and proc	cedure for cargo vo	essels using this			
6. Are cargo vessel			•	ation?			
☐ If YES, describe:	Yes	🛛 No)				
_,							
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.			
hours/day	24	24	24	24			
days/week	7	7	7	7			

page __ of __ WVDEP-OAQ Revision 03-2007

weeks/quarte	er	13	13		13		13	
8. Bulk Liqui	d D	ata (add pages as	necessar	v).				
Pump ID No.			NA					
Liquid Name			Produ	aced Fluid	\$			
	buał	nput (1000 gal/day)	0.58					
	•	ghput (1000 gal/yr)	210					
Loading Metho		<u></u>	Splash	Fill				
Max. Fill Rate		l/min)	TBD					
Average Fill T			TBD					
Max. Bulk Liqu	uid T	Cemperature (°F)	~70					
True Vapor Pr	ess	ure ²	0.21 psia	a				
Cargo Vessel	Cor	ndition ³	Unkno	wn				
Control Equip	men	t or Method ⁴	NA					
Minimum cont	rol e	efficiency (%)	0					
Maximum	Lo	ading (lb/hr)	~0.02	b/hr VOC				
Emission Rate	An	nual (lb/yr)	~1741	b/yr VOC				
Estimation Me	tho	d ⁵	AP-42	,				
¹ BF = Bottom	Fill	SP = Splash F	ill SUB	= Subme	rged Fill			
² At maximum	bul	k liquid temperature	ł					
³ B = Ballasted	d Ve	essel, C = Cleaned,	U = Unclea	ned (dedi	cated servi	ce), O =	other (d	escribe)
 ³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe) ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe) ⁵ EPA = EPA Emission Factor as stated in AP-42 								
MB = Materi								

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING				
None	Throughput of liquid loaded at site (gal/yr)				
REPORTING	TESTING				
None	None				

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

G3616

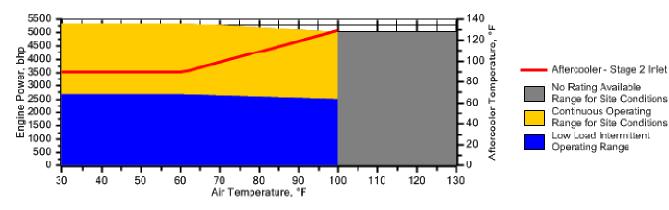
GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DAT Janus

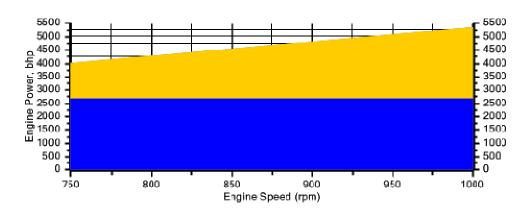
A	CATERPILLAR®

GAS COMPRESSION APPLICATION		Janus						
ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):	1000 7.6 SCAC 174 190	STRATEGY: LEVEL: YSTEM: DNDITIONS:			STANDARD CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL			
ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:	TA JW+1AC, OC+2AC ADEM4 DRY LOW EMISSION 0.5 17	SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:				Gas Analysis 58.0-70.3 58.6 1100 1200 5350 bhp@1000rpm		
					MAXIMUM RATING	-	TING AT N IR TEMPE	-
RAT	ING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER INLET AIR TEMPERATURE		(WITHOUT FAN)	(1)	bhp °F	<mark>5350</mark> 61	5004 100	3753 100	2502 100
AFTERCOOLER - STAGE 2 INLET (°F):			(2)	°F	90	129	129	129
ENGINE	E DATA							
FUEL CONSUMPTION (LHV)			(3)	Btu/bhp-hr	<mark>6649</mark>	6688	6875	7346
FUEL CONSUMPTION (HHV)			(3)	Btu/bhp-hr	<mark>7338</mark>	7382	7588	8107
AIR FLOW (@inlet air temp, 14.7 psia)		(WET)	(4)(5)	ft3/min	<mark>12300</mark>	12572	9479	6485
AIR FLOW		(WET)	(4)(5)	lb/hr	<mark>56238</mark>	53453	40303	27575
FUEL FLOW (60°F, 14.7 psia)				scfm	<mark>536</mark>	504	389	277
INLET MANIFOLD PRESSURE			(6)	in Hg(abs)	<mark>104.7</mark>	101.4	76.1	53.5
EXHAUST TEMPERATURE - ENGINE OUTLE			(7)	°F	<mark>812</mark>	831	890	957
EXHAUST GAS FLOW (@engine outlet temp, 1	14.5 psia)	(WET)	(8)(5)	ft3/min	<mark>31980</mark>	30834	24342	17517
EXHAUST GAS MASS FLOW		(WET)	(8)(5)	lb/hr	<mark>57938</mark>	55053	41536	28454
EMISSIONS DAT	A - ENGINE OUT			i		-	-	
NOx (as NO2)			(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
CO			(9)(10)	g/bhp-hr	2.47	2.47	2.47	2.47
THC (mol. wt. of 15.84)			(9)(10)	g/bhp-hr	3.33	3.55	3.86	4.04
NMHC (mol. wt. of 15.84)			(9)(10)	g/bhp-hr	1.23	1.31	1.42	1.49
NMNEHC (VOCs) (mol. wt. of 15.84)			(9)(10)(11)	g/bhp-hr	0.55	0.59	0.64	0.67
HCHO (Formaldehyde) CO2			(9)(10)	g/bhp-hr	0.20	0.20	0.22 449	0.24
EXHAUST OXYGEN			(9)(10) (9)(12)	g/bhp-hr % DRY	434 10.7	436 11.0	449 10.7	478 10.3
HEAT RE				•	•			
HEAT REJ. TO JACKET WATER (JW)			(13)	Btu/min	53513	53105	42942	36257
HEAT REJ. TO ATMOSPHERE			(13)	Btu/min	17853	17700	16186	14721
HEAT REJ. TO LUBE OIL (OC)			(13)	Btu/min	32563	30635	27055	23552
HEAT REJ. TO A/C - STAGE 1 (1AC)			(13)(14)	Btu/min	46341	50313	25135	6019
HEAT REJ. TO A/C - STAGE 2 (2AC)			(13)(14)	Btu/min	19487	11640	7974	4850
COOLING SYSTEM	I SIZING CRITERIA							

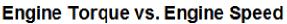
COOLING SYSTEM SIZING CRITERIA			
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	<mark>111244</mark>
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	<mark>59536</mark>
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.			

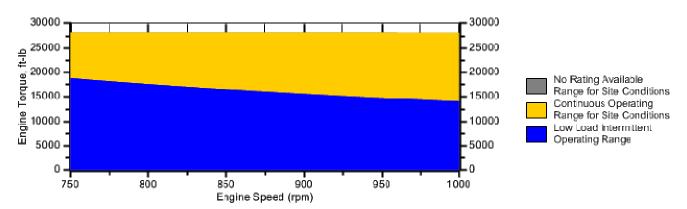

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.


GAS ENGINE SITE SPECIFIC TECHNICAL DATA Janus

Engine Power vs. Inlet Air Temperature


Data represents temperature sweep at 1205 ft and 1000 rpm


Engine Power vs. Engine Speed Data represents speed sweep at 1205 ft and 100 °F

No Rating Available Range for Site Conditions Continuous Operating Range for Site Conditions Low Load Intermittent Operating Range

Data represents speed sweep at 1205 ft and 100 °F

Note: At site conditions of 1205 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3616

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Janus

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Aftercooler temperature is based on site specified cooling system ambient capability. Refer to the table below.

Site Ambient Capability			
AC Temp.	Ambient Cap.		
90°F	60°F		
110°F	80°F		
130°F	100°F		

3. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is \pm 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	80.6440	80.6440	Fuel Makeup:	Gas Analysis
Ethane	C2H6	12.8910	12.8910	Unit of Measure:	English
Propane	C3H8	3.5750	3.5750		C C
Isobutane	iso-C4H1O	0.4550	0.4550	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.8340	0.8340		58.5
Isopentane	iso-C5H12	0.2300	0.2300	Caterpillar Methane Number:	56.5
Norpentane	nor-C5H12	0.2140	0.2140		
Hexane	C6H14	0.5010	0.5010	Lower Heating Value (Btu/scf):	1106
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1220
Nitrogen	N2	0.4660	0.4660	WOBBE Index (Btu/scf):	1327
Carbon Dioxide	CO2	0.1900	0.1900		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	151.44
Carbon Monoxide	CO	0.0000	0.0000		0.66%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.48
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.54
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.694
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.286
TOTAL (Volume %)		100.0000	100.0000	Specific Flear Constant (K).	1.200

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Technical Reference

Capstone MicroTurbineTM Systems Emissions

Summary

Capstone MicroTurbine[™] systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides volumetric measurements in parts per million and milligrams per normal cubic meter. A conversion between several common units is also provided.

Maximum Exhaust Emissions at ISO Conditions

Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas.

Model	Fuel	NOx	СО	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	0.64	1.8	0.23
CR30 MBTU	Landfill Gas ⁽²⁾	0.64	22.0	1.00
CR30 MBTU	Digester Gas (3)	0.64	11.0	1.00
C30 Liquid	Diesel #2 ⁽⁴⁾	2.60	0.41	0.23
C65 NG Standard	Natural Gas ⁽¹⁾	0.46	1.25	0.10
C65 NG Low NOx	Natural Gas ⁽¹⁾	0.17	1.30	0.10
C65 NG CARB	Natural Gas ⁽¹⁾	0.17	0.24	0.05
CR65 Landfill	Landfill Gas ⁽²⁾	0.46	4.0	0.10
CR65 Digester	Digester Gas ⁽³⁾	0.46	4.0	0.10
C200 NG	Natural Gas ⁽¹⁾	0.40	1.10	0.10
C200 NG CARB	Natural Gas ⁽¹⁾	0.14	0.20	0.04
CR200 Digester	Digester Gas ⁽³⁾	0.40	3.6	0.10

Table 1.	Emission fo	r Different	Capstone	Microturbine	Models in	[lb/MWhe]
----------	-------------	-------------	----------	--------------	-----------	-----------

Notes:

(1) Emissions for standard natural gas at 1,000 BTU/scf (HHV) or 39.4 MJ/m3 (HHV)

(2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen

(3) Emissions for surrogate gas containing 63% natural gas and 37% CO2

(4) Emissions for Diesel #2 according to ASTM D975-07b

(5) Expressed as Methane

410065 Rev. B (April 2008)

Page 1 of 6

Table 2 provides the same output-based information shown in Table 1, but expressed in grams per horsepower hour (g/hp-hr).

Model	Fuel	NOx	СО	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	0.22	0.60	0.078
CR30 MBTU	Landfill Gas ⁽²⁾	0.22	7.4	0.340
CR30 MBTU	Digester Gas ⁽³⁾	0.22	3.7	0.340
C30 Liquid	Diesel #2 ⁽⁴⁾	0.90	0.14	0.078
C65 NG Standard	Natural Gas ⁽¹⁾	0.16	0.42	0.034
C65 NG Low NOx	Natural Gas ⁽¹⁾	0.06	0.44	0.034
C65 NG CARB	Natural Gas ⁽¹⁾	0.06	0.08	0.017
CR65 Landfill	Landfill Gas ⁽²⁾	0.16	1.4	0.034
CR65 Digester	Digester Gas ⁽³⁾	0.16	1.4	0.034
C200 NG	Natural Gas ⁽¹⁾	0.14	0.37	0.034
C200 NG CARB	Natural Gas ⁽¹⁾	0.05	0.07	0.014
CR200 Digester	Digester Gas ⁽³⁾	0.14	1.3	0.034

Table 2. Emission for Different Capstone Microturbine Models in [g/hp-hr]

Notes: - same as for Table 1

Emissions may also be reported on a volumetric basis, with the most common unit of measurement being parts per million. This is typically a measurement that is corrected to specific oxygen content in the exhaust and without considering moisture content. The abbreviation for this unit of measurement is "ppmvd" (parts per million by volume, dry) and is corrected to 15% oxygen for electrical generating equipment such as microturbines. The relationship between an output based measurement like pounds per MWh and a volumetric measurement like ppmvd depends on the characteristics of the generating equipment and the molecular weight of the criteria pollutant being measured. Table 3 expresses the emissions in ppmvd at 15% oxygen for the Capstone microturbine models shown in Table 1. Note that raw measurements expressed in ppmv will typically be lower than the corrected values shown in Table 3 because the microturbine exhaust has greater than 15% oxygen.

Another volumetric unit of measurement expresses the mass of a specific criteria pollutant per standard unit of volume. Table 4 expresses the emissions in milligrams per normal cubic meter at 15% oxygen. Normal conditions for this purpose are expresses as one atmosphere of pressure and zero degrees Celsius. Note that both the ppmvd and mg/m3 measurements are for specific oxygen content. A conversion can be made to adjust either unit of measurement to other reference oxygen contents, if required. Use the equation below to convert from one reference oxygen content to another:

Emissions at New O₂ = $\frac{(20.9 - \text{New O}_2 \text{ Percent})}{(20.9 - \text{Current O}_2 \text{ Percent})} \text{ X Emissions at Current O}_2$

For example, to express 9 ppmvd of NOx at 15% oxygen to ppmvd at 3% oxygen:

Emissions at 3% O2 =	(20.9 – 3.0)	V 0 _ 27 ppm/d
E1115510115 at 5% O2 =	(20.9 – 15.0)	— X 9 = 27 ppmvd

410065 Rev. B (April 2008)

Page 2 of 6

Model	Fuel	NOx	СО	VOC
C30 NG	Natural Gas ⁽¹⁾	9	40	9
CR30 MBTU	Landfill Gas ⁽²⁾	9	500	40
CR30 MBTU	Digester Gas ⁽³⁾	9	250	40
C30 Liquid	Diesel #2 ⁽⁴⁾	35	9	9
C65 NG Standard	Natural Gas ⁽¹⁾	9	40	7
C65 NG Low NOx	Natural Gas ⁽¹⁾	4	40	7
C65 NG CARB	Natural Gas ⁽¹⁾	4	8	3
CR65 Landfill	Landfill Gas ⁽²⁾	9	130	7
CR65 Digester	Digester Gas ⁽³⁾	9	130	7
C200 NG	Natural Gas ⁽¹⁾	9	40	7
C200 NG CARB	Natural Gas ⁽¹⁾	4	8	3
CR200 Digester	Digester Gas ⁽³⁾	9	130	7

Table 3.	Emission for Differen	t Capstone Microturbine	Models in [ppmvd] at 15% O2
----------	-----------------------	-------------------------	-----------------------------

Notes: same as Table 1

Model	Fuel	NOx	СО	VOC ⁽⁵⁾
C30 NG	Natural Gas ⁽¹⁾	18	50	6
CR30 MBTU	Landfill Gas ⁽²⁾	18	620	30
CR30 MBTU	Digester Gas ⁽³⁾	18	310	30
C30 Liquid	Diesel #2 ⁽⁴⁾	72	11	6
C65 NG Standard	Natural Gas ⁽¹⁾	19	50	5
C65 NG Low NOx	Natural Gas ⁽¹⁾	8	50	5
C65 NG CARB	Natural Gas ⁽¹⁾	8	9	2
CR65 Landfill	Landfill Gas ⁽²⁾	18	160	5
CR65 Digester	Digester Gas (3)	18	160	5
C200 NG	Natural Gas (1)	18	50	5
C200 NG CARB	Natural Gas ⁽¹⁾	8	9	2
CR200 Digester	Digester Gas ⁽³⁾	18	160	5

Notes: same as Table 1

The emissions stated in Tables 1, 2, 3 and 4 are guaranteed by Capstone for new microturbines during the standard warranty period. They are also the expected emissions for a properly maintained microturbine according to manufacturer's published maintenance schedule for the useful life of the equipment.

Emissions at Full Power but Not at ISO Conditions

The maximum emissions in Tables 1, 2, 3 and 4 are at full power under ISO conditions. These levels are also the expected values at full power operation over the published allowable ambient temperature and elevation ranges.

410065 Rev. B (April 2008)

Page 3 of 6

Emissions at Part Power

Capstone microturbines are designed to maintain combustion stability and low emissions over a wide operating range. Capstone microturbines utilize multiple fuel injectors, which are switched on or off depending on the power output of the turbine. All injectors are typically on when maximum power is demanded, regardless of the ambient temperature or elevation. As the load requirements of the microturbine are decreased, injectors will be switched off to maintain stability and low emissions. However, the emissions relative to the lower power output may increase. This effect differs for each microturbine model.

Emissions Calculations for Permitting

Air Permitting agencies are normally concerned with the maximum amount of a given pollutant being emitted per unit of time (for example pounds per day of NOx). The simplest way to make this calculation is to use the maximum microturbine full electrical power output (expressed in MW) multiplied by the emissions rate in pounds per MWhe times the number of hours per day. For example, the C65 CARB microturbine operating on natural gas would have a NOx emissions rate of:

NOx = .17 X (65/1000) X 24 = .27 pounds per day

This would be representative of operating the equipment full time, 24 hours per day, at full power output of 65 kWe.

As a general rule, if local permitting is required, use the published agency levels as the stated emissions for the permit and make sure that this permitted level is above the calculated values in this technical reference.

Consideration of Useful Thermal Output

Capstone microturbines are often deployed where their clean exhaust can be used to provide heating or cooling, either directly or using hot water or other heat transfer fluids. In this case, the local permitting or standards agencies will usually consider the emissions from traditional heating sources as being displaced by the useful thermal output of the microturbine exhaust energy. This increases the useful output of the microturbine, and decreases the relative emissions of the combined heat and power system. For example, the CARB version C65 ICHP system with integral heat recovery can achieve a total system efficiency of 70% or more, depending on inlet water temperatures and other installation-specific characteristics. The electric efficiency of the CARB version C65 microturbine is 28% at ISO conditions. This means that the total NOx output based emissions, including the captured thermal value, is the electric-only emissions times the ratio of electric efficiency divided by total system efficiency:

NOx = .17 X 28/70 = .068 pounds per MWh (based on total system output)

This is typically much less than the emissions that would result from providing electric power using traditional central power plants, plus the emissions from a local hot water heater or boiler. In fact microturbine emissions are so low compared with traditional hot water heaters that installing a Capstone microturbine with heat recovery can actually decrease the local emissions of NOx and other criteria pollutants, without even considering the elimination of emissions from a remote power plant.

410065 Rev. B (April 2008)

Page 4 of 6

Greenhouse Gas Emissions

Many gasses are considered "greenhouse gasses", and agencies have ranked them based on their global warming potential (GWP) in the atmosphere compared with carbon dioxide (CO₂), as well as their ability to maintain this effect over time. For example, methane is a greenhouse gas with a GWP of 21. Criteria pollutants like NOx and organic compounds like methane are monitored by local air permitting authorities, and are subject to strong emissions controls. Even though some of these criteria pollutants can be more troublesome for global warming than CO₂, they are released in small quantities – especially from Capstone microturbines. So the major contributor of concern is carbon dioxide, or CO₂. Emission of CO₂ depends on two things:

- 1. Carbon content in the fuel
- 2. Efficiency of converting fuel to useful energy

It is for these reasons that many local authorities are focused on using clean fuels (for example natural gas compared with diesel fuel), achieving high efficiency using combined heat and power systems, and displacing emissions from traditional power plants using renewable fuels like waste landfill and digester gasses.

Table 5 shows the typical CO₂ emissions due to combustion for different Capstone microturbine models at full power and ISO conditions. The values do not include CO₂ that may already exist in the fuel itself, which is typical for renewable fuels like landfill and digester gas. These values are expressed on an output basis, as is done for criteria pollutants in Table 1. The table shows the pounds per megawatt hour based on electric power output only, as well as considering total useful output in a CHP system with total 70% efficiency (LHV). As for criteria pollutants, the relative quantity of CO₂ released is substantially less when useful thermal output is also considered in the measurement.

Model	Fuel	С	O2
		Electric Only	70% Total CHP
C30 NG	Natural Gas ⁽¹⁾	1,690	625
CR30 MBTU	Landfill Gas ⁽¹⁾	1,690	625
CR30 MBTU	Digester Gas ⁽¹⁾	1,690	625
C30 Liquid	Diesel #2 ⁽²⁾	2,400	855
C65 NG Standard	Natural Gas ⁽¹⁾	1,520	625
C65 NG Low NOx	Natural Gas ⁽¹⁾	1,570	625
C65 NG CARB	Natural Gas ⁽¹⁾	1,570	625
CR65 Landfill	Landfill Gas (1)	1,520	625
CR65 Digester	Digester Gas ⁽¹⁾	1,520	625
C200 NG	Natural Gas ⁽¹⁾	1,330	625
C200 NG CARB	Natural Gas ⁽¹⁾	1,330	625
CR200 Digester	Digester Gas ⁽¹⁾	1,330	625

Table 5. CO₂ Emission for Capstone Microturbine Models in [lb/MWh]

Notes:

(1) Emissions due to combustion, assuming natural gas with CO2 content of 117 lb/MMBTU (HHV)

(2) Emissions due to combustion, assuming diesel fuel with CO₂ content of 160 lb/MMBTU (HHV)

410065 Rev. B (April 2008)

Useful Conversions

The conversions shown in Table 6 can be used to obtain other units of emissions outputs. These are approximate conversions.

From	Multiply By	To Get
lb/MWh	0.338	g/bhp-hr
g/bhp-hr	2.96	lb/MWh
lb	0.454	kg
kg	2.20	lb
kg	1,000	g
hp (electric)	.746	kW
kW	1.34	hp (electric)
MW	1,000	kW
kW	0.001	MW

 Table 6. Useful Unit Conversions

Definitions

- ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia).
- HHV: Higher Heating Value
- LHV: Lower Heating Value
- kW_{th}: Kilowatt (thermal)
- kW_e : Kilowatt (electric)
- MWh: Megawatt-hour
- hp-hr: horsepower-hour (sometimes referred to as "electric horsepower-hour")
- Scf: Standard cubic foot (standard references ISO temperature and pressure)
- m3: Normal cubic meter (normal references 0 °C and one atmosphere pressure)

Capstone Contact Information

If questions arise regarding this technical reference, please contact Capstone Turbine Corporation for assistance and information:

Capstone Applications

Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786

Fax: (818) 734-5385

E-mail: applications@capstoneturbine.com

ATTACHMENT M

Air Pollution Control Device Sheet

Attachment M **Air Pollution Control Device Sheet** (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C1-C4

5. 6.

	Equipment	Information
1.	Manufacturer: EMIT Technologies (or similar) Model No. EBX-9000-3036F-8C4E-48C (or similar)	2. Control Device Name: C1-C4 (Oxidation Catalysts) Type: Catalytic Oxidation Catalyst
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or designing this collection device.
5.	Provide a scale diagram of the control device showin	g internal construction.
6.	Submit a schematic and diagram with dimensions an	d flow rates.
VO For	Guaranteed minimum collection efficiency for each po – 93% (Estimated), C (NMNEHC+HCHO) – 56% (Estimated) maldehyde – 90% (Estimated) INEHC – 43% (Estimated)	ollutant collected:
8.	Attached efficiency curve and/or other efficiency infor	mation.
9.	Design inlet volume: 31,980 SCFM	10. Capacity: NA
11. NA		provided to measure pressure drop and flow rate, if any.
12.	Attach any additional data including auxiliary equipme equipment.	nt and operation details to thoroughly evaluate the control
13.	Description of method of handling the collected mate	ial(s) for reuse of disposal.

Gas Stream Characteristics					
14. Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes No				
15. Inlet Emission stream parameters:	Maximum	Typical			
Pressure (mmHg):					
Heat Content (BTU/scf):					
Oxygen Content (%):					
Moisture Content (%):					
Relative Humidity (%):					

16.	Type of pollutant(s) controlled	l: 🗌 S	SOx	☐ Odor ⊠ Other			
17.	Inlet gas velocity:	ft/se	C	18. Pollutant	specific gravity:		
19.	Gas flow into the collector: 31,980 ACF @ 812°	F and	PSIA	20. Gas strea	im temperature: Inlet: Outlet:	812 vari	
21.	Gas flow rate: Design Maximum: Average Expected:	31,980	ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	in grains/scf:	
23.	Emission rate of each pollutar	nt (specify)	into and out	of collector:			
	Pollutant	IN Po	ollutant	Emission	OUT Po	ollutant	Control
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A CO	29.13		100	2.04		93
	B VOC (NMNEHC+HCHO)	8.85		100	3.93		56
	C Formaldehyde	2.36		100	0.24		90
	D						
	E						
24.	Dimensions of stack:	Height	t	ft.	Diameter	1	ft.
25.	Supply a curve showing prop	osed colle	ction efficien	cy versus gas	volume from 25	5 to 130 perce	nt of design

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 - 2		
2-4		
4 - 6		
6 - 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 - 100		
>100		

	 Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): None 				
28. Describe the collect	tion material disposal system:				
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?			
Please propose mo		and Testing ing in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions			
MONITORING: Operate and maintain catalyst element according to the recommendations of the manufacturer RECORDKEEPING: Keep records of all catalytic reduction devi- maintenance					
REPORTING: None TESTING: None					
MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipme or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING: Please describe any proposed emissions testing for this process equipment on air pollutic control device. Please describe any proposed emissions testing for this process equipment on air pollutic control device. Please describe any proposed emissions testing for this process equipment on air pollutic control device.					
 31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. CO – 93% (Estimated), VOC (NMNEHC+HCHO) – 56% (Estimated) Formaldehyde – 90% (Estimated) 					
 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. CO – 93% (Estimated), VOC (NMNEHC+HCHO) – 56% (Estimated) Formaldehyde – 90% (Estimated) 					

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

	Control Device ID No.	(must match Emission Units Table):	FLARE-001 to FLARE-002
--	-----------------------	------------------------------------	------------------------

Equipment Information				
1. Manufacturer: Envirotherm (or similar) Model No. ETI-DVC-36-20 (or similar)	 Method: Elevated flare Ground flare Other Describe Enclosed Flare 			
 Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state 	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
 4. Method of system used: □ Steam-assisted □ Air-assisted 	Pressure-assisted Non-assisted			
5. Maximum capacity of flare: scf/min scf/hr	6. Dimensions of stack: Diameter 3 ft. Height 20 ft.			
 7. Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: > 98 % Minimum guaranteed: > 98 % 9. Number of burners: One (1) 	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 11. Describe method of controlling flame: 			
Rating: 7 MMBTU/hr 0. Will preheat be used? Yes No				
12. Flare height: 20 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min			
13. Flare tip inside diameter: 28 inches ft	74 scf/hr			
15. Number of pilot lights: One (1) Total 0.09 MMBTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No			
17. If automatic re-ignition will be used, describe the method:				
 18. Is pilot flame equipped with a monitor? If yes, what type? ☐ Thermocouple ☐ Infra-Red ☐ Ultra Violet ☐ Camera with monitoring control room ☐ Other, Describe: 				
9. Hours of unit operation per year: 8760				

Steam Injection					
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG		
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F		
24. Velocity	ft/sec	25. Number of jet streams			
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydroc	arbon		
28. How will steam flow be controlled if steam injection is used?					

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source o	f Material	
	See attached emissions calculations					
	-					
30.	Estimate total combustible t	to flare: 27	/0 (from GLYcalc) LB/h	r		
	(Maximum mass flow rate o	f waste gas)	scfm			
31.	. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:					
32.	. Give composition of carrier gases:					
33	34. Identify and describe all auxiliary fuels to be burned.					
00.	>100 °F BTU/scf					
	Heating value of emission s				BTU/scf	
	116-1,651 BTU/ft3BTU/scfMean molecular weight of emission stream:BTU/scf					
	Mean molecular weight of emission stream:BTU/scfMW =Ib/Ib-moleBTU/scf					
25	5. Temperature of flare gas: 1450-1600 °F 36. Flare gas flow rate: 121 scf/min					
			38. Flare gas exit velocity:		11	
	7. Flare gas heat content: 116-1,651 BTU/ft ³ 38. Flare gas exit velocity: 22.81 ft/sec 9. Maximum rate during emergency for one major piece of equipment or process unit: scf/min					
	Maximum rate during emergency for one major piece of equipment or process unit: BTU/min					
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):					
42.	Describe the collection mate	erial disposal system:				
43.	Have you included Flare Co	ontrol Device in the Emiss	sions Points Data Summary S	Sheet?		

44. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING:		RECORDKEEPING:		
Presence of pil	ot (temperature)	Maintain records of the times and duration of all		
		periods where the pilot flame was absent		
		Maintain records of visible emission opacity tests		
REPORTING:		TESTING:		
None		Conduct a Method 22 opacity test as required		
MONITORING:		pcess parameters and ranges that are proposed to be		
		e compliance with the operation of this process equipment		
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution		
TESTING:	Please describe any proposed en control device.	nissions testing for this process equipment on air pollution		
VOC – 100% HAP – 100%	aranteed Capture Efficiency for ea			
46. Manufacturer's Gua VOC – 98% HAP – 98%	aranteed Control Efficiency for eac	h air pollutant.		
47. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.		

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): FLARE-003

	Equipment Information				
1. Mo	Manufacturer: Envirotherm (or similar) del No. EF-96-30 (or similar)	 Method: Elevated flare Ground flare Other Describe Tank Enclosed Flare 			
3.	Provide diagram(s) of unit describing capture systecapacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted Non-assisted			
5.	Maximum capacity of flare: scf/min scf/hr	 Dimensions of stack: Diameter 8 ft. Height 30 ft. 			
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: >95 % Minimum guaranteed: >95 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 			
9.	Number of burners: One (1) Rating: 41 MMBTU/hr	11. Describe method of controlling flame:			
10.	Will preheat be used? Yes No				
12.	Flare height: 30 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min			
13.	Flare tip inside diameter: 8 ft	100 scf/hr			
15.	Number of pilot lights: One (1) Total 0.12 MMBTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No			
17.	17. If automatic re-ignition will be used, describe the method: The pilot flare will re-ignite upon pilot failure				
		☐ No -Red lera with monitoring control room			
L					

Steam Injection					
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG		
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F		
24. Velocity	ft/sec	25. Number of jet streams			
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydrod	carbon		
28. How will steam flow be controlled if steam injection is used?					

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)		Source of Material
			nissions calculations	•	
30.	Estimate total combustible t		LB/I	hr	
	(Maximum mass flow rate o	of waste gas) 33	38 scfr	n (20,2	280 scfh)
31.	Estimated total flow rate to	flare including materials to	be burned, carrier gases, a	uxiliary	y fuel, etc.:
32.	Give composition of carrier	gases:			
22	Temperature of emission st	room:	34. Identify and describe al	l auxili	ary fuels to be burned.
55.	>70	°F			BTU/scf
	Heating value of emission s				BTU/scf
	1,951				BTU/scf
	Mean molecular weight of e MW = Ib/Ib-mole	emission stream:			BTU/scf
					BTU/scf
35.	Temperature of flare gas:	1800 °F	36. Flare gas flow rate:	625	scf/min (37,500 scfh)
37.	Flare gas heat content: 1,9	951 BTU/ft ³	38. Flare gas exit velocity:	125	ft/sec
39.	Maximum rate during emerg	gency for one major piece	of equipment or process un	it:	scf/min
	Maximum rate during emerg				BTU/min
41.	Describe any air pollution or reheating, gas humidification	control device inlet and on n):	utlet gas conditioning proce	esses (e.g., gas cooling, gas
42.	Describe the collection mate	erial disposal system:			
43.	Have you included Flare Co	ontrol Device in the Emiss	sions Points Data Summary	Sheet	?

Please propose mo operating paramete limits.		ting in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions
MONITORING:		RECORDKEEPING:
Presence of pil	ot (temperature)	Maintain records of the times and duration of all
		periods where the pilot flame was absent
		Maintain records of visible emission opacity tests
REPORTING:		TESTING:
None		Conduct a Method 22 opacity test as required
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING: REPORTING:	Please describe the proposed re	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution
TESTING:		nissions testing for this process equipment on air pollution
VOC – 100% HAP – 100%	aranteed Capture Efficiency for ea	
46. Manufacturer's Gua VOC – 95%	aranteed Control Efficiency for eac	ch air pollutant.
HAP – 95%		
47. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

QUOTE: QUO-16388-Q3X4

Prepared For: Matthew Peterson EQT MIDSTREAM

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3616
Horsepower:	5350
RPM:	1000
Compression Ratio:	9.2
Exhaust Flow Rate:	31980 CFM
Exhaust Temperature:	812 °F
Reference:	DM8608-04-002
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	<u>Tons/Year</u>
NOx:	0.50	5.90	25.83
CO:	2.47	29.13	127.60
THC:	3.33	39.28	172.03
NMHC	1.23	14.51	63.54
NMNEHC:	0.55	6.49	28.41
HCHO:	0.20	2.36	10.33
O2:	10.70 %		

POST CATALYST EMISSIONS

	% Reduction	<u>Lb/Hr</u>
NOx:	Unaffected by	Oxidation Catalyst
CO:	>93 %	<2.04
VOC:	>43 %	<3.70
HCHO:	>90 %	<0.23

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Outlet Connections: Silencer: Silencer: Silencer Grade: Insertion Loss: EBX-9000-3036F-8C4E-48C EMIT Technologies, Inc Rectangle 48" x 15" x 3.5" 8 Element Capacity Ground Level Accessible Housing 3/16" Carbon Steel 9 (0.5" NPT) 30" Flat Face Flange 36" Flat Face Flange Side In / End Out Integrated Hospital Enhanced 35-50 dBA

Catalyst Element

Model: Catalyst Type: Substrate Type: Manufacturer: Element Quantity: Element Size: RT-4815-H Oxidation, Premium Precious Group Metals BRAZED EMIT Technologies, Inc 6 Rectangle 48" x 15" x 3.5"

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 50 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shill not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

Flare Stacks – Thermal Oxidizers – Burners & Controls

EQT EF-96-30 TECHNICAL SUMMARY

Customer: EQT Attn: Matthew Peterson Prepared By: Mike Riddell (817)233-9169 mriddell@irsvc.com

Francisco Cuevas (817)925-8388 fcuevas@irsvc.com

Date Prepared:

Technical Summary

Design Condition

Process inlet stream:

Bullet Tank Flash GasStream #1

Pipe Size:	4" Sch 40
Inlet Pressure:	0-90 PSIG
Volume Max:	20,280 SCFH
BTU Value	1,951 Btu/Scf
Total Heat input MAX	39.6 MMBTU/HR
Total BTU Load Max	41 MMBTU/hr
Combustion Chamber Temp: High	1800 °F
Limit	
Residence Time:	≥ 1.0 Sec.
Exit Velocity:	29.64 FT/sec.
Destruction Efficiency:	≥ 95%
Turn Down	10 : 1

Utility Flare Sizing:

Pipe Size:
Inlet Pressure:
Volume
BTU Value
Total Heat input
Exit Velocity:
Destruction Efficiency:
Δ P tip
Design Radiation

Site Conditions:

Wind Speed Seismic Zone Elevation Humidity

Utilities:

Gas Service Required for Pilot

Gas Service Required for Assist Fuel Electrical Service Required Compressed Gas for Valves

90 MPH 1 1000 ft. High

≥ 95% .15 PSIG

6" Sch 40 8-12 osi

37,500 SCFH 1600 Btu/Scf 60.0 MMBTU/HR 125 FT/sec.

497 BTU/hr-sq.ft.

100 SCFH – Natural Gas @ 20 PSIG Min. / 150 PSIG Max 8,000 SCFH – Natural Gas @ 20 PSIG Min. (Intermittent Usage) 480 VAC, 3ph, 60Hz, 20 amp 80 PSIG – Intermittent

Flare Stacks – Thermal Oxidizers – Burners & Controls

EQT 36 - DVC TECHNICAL SUMMARY

Customer: EQT Attn: Matthew Peterson Prepared By: Mike Riddell (817)233-9169 <u>mriddell@irsvc.com</u> Date Prepared: July 9, 2015

Francisco Cuevas (817)925-8388 fcuevas@irsvc.com

Technical Summary Process Inlet Stream: Based on GRI-Gly Calc Output

OVERHEA	D STILL INLET				
Inlet Temperature:	212 °F				
Inlet Pressure:	14.7 PSIG				
Flow Rate:	6,220 SCFH				
Heating Value:	115.87 BTU/FT ³				
FLASH	GAS INLET				
Inlet Temperature:	120 °F				
Inlet Pressure:	20-50 PSIG				
Flow Rate:	939 SCFH				
Heating Value:	1,651 BTU/FT ³				
STACK F	PROPERTIES				
Exit Inner Diameter:	28 IN				
Exit Outer Diameter:	36 IN				
Stack Height:	20 FT				
Mass Flow at 1450°F:	350,975 ACFH				
Exit Velocity:	22.81 FT/SEC				
Maximum BTU Load on Unit:	7 MMBTU/HR				
Maximum BTU Load of Stream:	3.0 MMBTU/HR				
Combustion Chamber Temp:	1450°F – 1600°F				
Destruction Efficiency:	≥98.0%				
Residence Time:	≥0.85 Sec.				

SITE C	ONDITIONS
Wind Speed:	90 MPH
Seismic Zone:	1
Elevation:	1,000 FT
Humidity:	High

UTILITIES							
Gas Service Required for Burner:	400 SCFH – Natural Gas intermittent use, only on when temperature < 1450 °F						
Electrical Service Required:	24 VDC, 5 Amps						
Gas Consumption at Start-up:	400,000 Btu/hr						
Gas Consumption under load:	≤ 400 SCFH, Dependant on BTU value of waste stream						

ATTACHMENT N

Supporting Emission Calculations

EQT Gathering - Janus Station Facility-Wide Emissions Summary

						Jar	nus Station									
	CAT G3616 Compressor Engines	Capstone Microturbine	Fuel Gas	Heaters	Dehydrator Enclosed Flares	Dehydration Units	Reboilers	Tank Enclosed Flare	Haul Roads	Miscellaneous Storage Tanks	Produced Fluids Storage Tanks	Liquid Loading Operations	Station Fugitives Blowdowns & Component Leaks			
Emission Unit ID	ENG-001 to ENG-004	EG-001 to EG-005	HTR-1	HTR-2	DEHY-001 to DEHY-002	DEHY-001 to DEHY-002	RB-001 to RB-002	FLARE-003	NA	T003 to T024	T-001 to T002	LI	NA	Janus Station		
Emission Point ID	ENG-001 to ENG-004	EG-001 to EG-005	HTR-1	HTR-2	FLARE-001 to FLARE-002	FLARE-001 to FLARE-002	RB-001 to RB-002	FLARE-003	NA	NA	FLARE-003	L1	NA		Janus Station TOTAL	
Equipment Count	4	5	1	1	2	2	2	1	NA	22	2	NA	NA			
Equipment Status	New	New	New	New	New	New	New	New	New	New	New	New	New			
Fuel Type	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas		Natural Gas	Natural Gas		NA	NA					
Capacity	5,350	1.0	1.15	0.77	7	125	2.31	41	NA	4,200 or less	210	NA	NA			
Unit Hours per Year	bhp 8,760	MW 8,760	MMBtu/hr 8,760	MMBtu/hr 8,760	MMBtu/hr 8,760	MMSCFD 8,760	MMBtu/hr 8,760	MMBtu/hr 8,760	8,760	gallon 8,760	bbl 8,760	8,760	8,760			
Pollutant	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	lb/hr	tpy	
PM_{10}	6.90	0.33	0.03	0.02	0.38		0.13	1.12	0.20					2.1	9.1	
PM2.5	6.90	0.33	0.03	0.02	0.38		0.13	1.12	0.01					2.0	8.9	
SO _X	0.41	0.17	<0.01	< 0.01	0.03		0.01	0.09						0.2	0.7	
СО	35.73	4.82	0.35	0.23	4.25		1.39	12.34						13.5	59.1	
NO _X	103.32	1.75	0.41	0.28	5.07		1.65	14.69						29.0	127.2	
VOC (incl. HCHO)	68.91	0.44	0.02	0.02		13.60	0.09			0.00	0.42	0.09	12.01	21.8	95.6	
CO ₂	89,682	5,825	589	395	7,267	7,295	2,368	21073					0.22	30,706	134,494	
CH_4	433.94	0.11	0.01	0.01	0.14	6.32	0.04	0.40					33.37	108.3	474	
N ₂ O	0.15	0.01	< 0.01	< 0.01	0.01		0.00	0.04						0.1	0.2	
CO ₂ e	100,576	5,831	590	395	7,274	7,453	2,370	21095					834	33,429	146,419	
Formaldehyde	4.13	0.04	< 0.01	< 0.01			<0.01							1.0	4.2	
Total HAPs (including HCHO)	17.53	0.05	0.01	0.01		5.92	0.03				0.01		0.51	5.5	24.1	

1. VOC and HAP emissions are included in the storage tank emissions.

Compressor Engines (Per Engine)

Manufacturer:	Caterpillar
Model No.:	3616
Stroke Cycle:	4-stroke
Type of Burn:	Lean Burn
Year Installed/Date Manufactured	TBD
Fuel Used:	Natural Gas
Fuel High Heating Value (HHV) (Btu/scf):	1,226
Rated Horsepower (bhp):	5,350
Specific Fuel Consumption (Btu/bhp-hr)	7,338
Maximum Fuel Consumption at 100% Load (scf/hr):	32,160
Heat Input (MMBtu/hr)	39.43
Control Device:	Oxidation Catalyst
Operational Details:	
Potential Annual Hours of Operation (hr/yr):	8,760
Potential Fuel Consumption (MMscf/yr):	281.7

Criteria and Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors ^a	Units	Estimation Basis / Emission Factor Source		
NOx	0.50	g/bhp-hr	CAT GERP Vendor Spec Sheet		
СО	0.17	g/bhp-hr	Catalyst Vendor Spec Sheet		
SO ₂	5.88E-04	lb/MMBtu	AP-42, Table 3.2-2 (Jul-2000)		
PM ₁₀ (Filterable)	7.71E-05	lb/MMBtu	AP-42, Table 3.2-2 (Jul-2000)		
PM _{2.5} (Filterable)	7.71E-05	lb/MMBtu	AP-42, Table 3.2-2 (Jul-2000)		
PM Condensable	9.91E-03	lb/MMBtu	AP-42, Table 3.2-2 (Jul-2000)		
PM Total	9.99E-03	lb/MMBtu	AP-42, Table 3.2-2 (Jul-2000)		
NMNEHC	0.31	g/bhp-hr	Catalyst Vendor Spec Sheet		
VOC (Includes HCHO)	0.33	g/bhp-hr	Catalyst Vendor Spec Sheet		
Formaldehyde (HCHO)	0.02	g/bhp-hr	Catalyst Vendor Spec Sheet		
CO ₂	434.0	g/bhp-hr	CAT GERP Vendor Spec Sheet		
CH ₄	2.10	g/bhp-hr	Vendor Spec Sheet (=THC-NMHC)		
N ₂ O	1.00E-04	kg/MMBtu	40 CFR 98, Table C-2		

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Potential Emissions			
Pollutant	(lb/hr) ^b	(tons/yr) ^c		
NO _x	5.90	25.83		
CO	2.04	8.93		
SO ₂	0.02	0.10		
PM ₁₀ (Filterable)	0.003	0.01		
PM _{2.5} (Filterable)	0.003	0.01		
PM Condensable	0.39	1.71		
PM Total	0.39	1.73		
NMNEHC	3.70	16.20		
VOC (incl HCHO)	3.93	17.23		
Formaldehyde (HCHO)	0.24	1.03		
CO_2	5,119	22,420		
CH ₄	24.77	108.49		
N ₂ O	0.01	0.04		

Compressor Engines (Per Engine)

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potentia	l Emissions
Pollutant	(lb/MMBtu) ^a	(lb/hr) ^b	(tons/yr) ^c
HAPs:			
Acenaphthene	1.25E-06	4.93E-05	2.16E-04
Acenaphthylene	5.53E-06	2.18E-04	9.55E-04
Acetaldehyde	8.36E-03	3.30E-01	1.44E+00
Acrolein	5.14E-03	2.03E-01	8.88E-01
Benzene	4.40E-04	1.74E-02	7.60E-02
Benzo(b)fluoranthene	1.66E-07	6.55E-06	2.87E-05
Benzo(e)pyrene	4.15E-07	1.64E-05	7.17E-05
Benzo(g,h,i)perlyene	4.14E-07	1.63E-05	7.15E-05
Biphenyl	2.12E-04	8.36E-03	3.66E-02
1,3-Butadiene	2.67E-04	1.05E-02	4.61E-02
Carbon Tetrachloride	3.67E-05	1.45E-03	6.34E-03
Chlorobenzene	3.04E-05	1.20E-03	5.25E-03
Chloroform	2.85E-05	1.12E-03	4.92E-03
Chrysene	6.93E-07	2.73E-05	1.20E-04
1,3-Dichloropropene	2.64E-05	1.04E-03	4.56E-03
Ethylbenzene	3.97E-05	1.57E-03	6.86E-03
Ethylene Dibromide	4.43E-05	1.75E-03	7.65E-03
Fluoranthene	1.11E-06	4.38E-05	1.92E-04
Fluorene	5.67E-06	2.24E-04	9.79E-04
Methanol	2.50E-03	9.86E-02	4.32E-01
Methylene Chloride	2.00E-05	7.89E-04	3.45E-03
n-Hexane	1.11E-03	4.38E-02	1.92E-01
Phenanthrene	1.04E-05	4.10E-04	1.80E-03
Phenol	2.40E-05	9.46E-04	4.15E-03
Pyrene	1.36E-06	5.36E-05	2.35E-04
Styrene	2.36E-05	9.31E-04	4.08E-03
Toluene	4.08E-04	1.61E-02	7.05E-02
1,1,2,2-Tetrachloroethane	4.00E-05	1.58E-03	6.91E-03
Tetrachloroethane	2.48E-06	9.78E-05	4.28E-04
1,1,2-Trichloroethane	3.18E-05	1.25E-03	5.49E-03
2,2,4-Trimethylpentane	2.50E-04	9.86E-03	4.32E-02
Vinyl Chloride	1.49E-05	5.88E-04	2.57E-03
Xylene	1.84E-04	7.26E-03	3.18E-02
Polycyclic Organic Matter:			
Naphthalene	7.44E-05	2.93E-03	1.29E-02
2-Methylnaphthalene	3.32E-05	1.31E-03	5.73E-03
РАН	2.69E-05	1.06E-03	4.65E-03
Total HAP		1.00	4.38

Notes:
1. SO₂, PM, and HAP emission factors from AP-42 Section 3.2, Table 3.2-2 "Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines," Supplement F, August 2000. NO_X, VOC, CO, CO₂, and CH₄ (=THC-NMHC) and formaldehyde emission factors are based on manufacturer's data. Greenhouse gas emission factors (N₂O) are based on 40 CFR Part 98, Subpart C, Table C-2 for natural gas combustion.

2. Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr or bhp) \times Emission Factor (lb/MMBtu or gr/bhp-hr).

 $3. Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8,760 hr/yr) \times (1 ton/2000 lb).$

Microturbine Unit Information:

Manufacturer:	Capstone
Model No.:	C200
Projected Startup Date:	Upon Approval
Number of Units:	5

Notes:

1. The unit is comprised of 5 identical C200 units.

Microturbine Fuel Information:

	Per C1000 Unit
Fuel Type:	Natural Gas
Higher Heating Value (Btu/Scf)	1,226
Rated Electrical Power Output (kW):	1,000
Rated Electrical Power Output (MW):	1.000
Rated Horsepower (bhp):	1,341
Heat Input (MMBtu/hr)	11.40
Potential Fuel Consumption (scf/hr):	9,297
Potential Fuel Consumption (MMBtu/yr):	99,864
Max. Annual Hours of Operation (hr/yr):	8,760

Microturbine Emissions Data:

Pollutant	Emission Factors	Emission Factors Units		tential Emissions	Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
NO _X	0.40	lb/MWhe	0.40	1.75	Manufacturer's Specifications	
VOC	0.10	lb/MWhe	0.10	0.44	Manufacturer's Specifications	
CO	1.10	lb/MWhe	1.10	4.82	Manufacturer's Specifications	
SO _X	0.0034	lb/MMBtu	0.04	0.17	AP-42, Table 3.1-2a (Apr-2000)	
PM ₁₀	0.0066	lb/MMBtu	0.08	0.33	AP-42, Table 3.1-2a (Apr-2000)	
PM _{2.5}	0.0066	lb/MMBtu	0.08	0.33	AP-42, Table 3.1-2a (Apr-2000)	
GHG (CO ₂ e)	See Tabl	See Table Below		5,831	Manuf. Specs / 40 CFR 98, Table C-2	
Other (Total HAP)	See Tabl	e Below	0.01	0.05	AP-42, Table 3.1-3 (Apr-2000)	

Notes:
1. NMNEHC is non-methane, non-ethane hydrocarbon excluding formaldehyde (HCHO).

2. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

3. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

4. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this engine type, including HCHO.

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions		Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
GHGs:					
CO ₂	1,330	lb/MWhe	1,330	5,825	Manufacturer's Specifications
CH_4	0.001	kg/MMBtu	0.03	0.11	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
GHG (CO ₂ e)			1,331	5,831	
HAPs:					
1,3-Butadiene	4.3E-07	lb/MMBtu	4.90E-06	2.15E-05	AP-42, Table 3.1-3 (Apr-2000)
Acetaldehyde	4.0E-05	lb/MMBtu	4.56E-04	2.00E-03	AP-42, Table 3.1-3 (Apr-2000)
Acrolein	6.4E-06	lb/MMBtu	7.30E-05	3.20E-04	AP-42, Table 3.1-3 (Apr-2000)
Benzene	1.2E-05	lb/MMBtu	1.37E-04	5.99E-04	AP-42, Table 3.1-3 (Apr-2000)
Ethylbenzene	3.2E-05	lb/MMBtu	3.65E-04	1.60E-03	AP-42, Table 3.1-3 (Apr-2000)
Formaldehyde	7.1E-04	lb/MMBtu	8.09E-03	3.55E-02	AP-42, Table 3.1-3 (Apr-2000)
Naphthalene	1.3E-06	lb/MMBtu	1.48E-05	6.49E-05	AP-42, Table 3.1-3 (Apr-2000)
PAH	2.2E-06	lb/MMBtu	2.51E-05	1.10E-04	AP-42, Table 3.1-3 (Apr-2000)
Propylene oxide	2.9E-05	lb/MMBtu	3.31E-04	1.45E-03	AP-42, Table 3.1-3 (Apr-2000)
Toluene	1.3E-04	lb/MMBtu	1.48E-03	6.49E-03	AP-42, Table 3.1-3 (Apr-2000)
Xylene	6.4E-05	lb/MMBtu	7.30E-04	3.20E-03	AP-42, Table 3.1-3 (Apr-2000)
Total HAP	•		0.012	0.051	•

Dehydration Unit & Combustor Emissions

GRI-GLYCalc Version 4.0 - EMISSIONS SUMMARY

Controlled Regenerator E	Controlled Regenerator Emissions						
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)				
Carbon dioxide	0.91	21.8	3.99				
Methane	0.0234	0.563	0.103				
Ethane	0.0623	1.495	0.273				
Propane	0.0620	1.488	0.272				
Isobutane	0.0178	0.427	0.078				
n-Butane	0.0511	1.227	0.224				
Isopentane	0.0168	0.403	0.074				
n-Pentane	0.0232	0.558	0.102				
n-Hexane*	0.0222	0.534	0.097				
Cyclohexane	0.0288	0.692	0.126				
Other Hexanes	0.0221	0.530	0.097				
Heptanes	0.0689	1.655	0.302				
2,2,4-Trimethylpentane*	0.0145	0.349	0.064				
Benzene*	0.0799	1.918	0.350				
Toluene*	0.2164	5.193	0.948				
Ethylbenzene*	0.0387	0.929	0.170				
Xylenes*	0.2660	6.385	1.165				
C8+ Heavier Hydrocarbons	0.0664	1.594	0.291				
Total Emissions	1.0808	25.938	4.734				
Total Hydrocarbon Emissions	1.0808	25.938	4.734				
Total VOC Emissions	0.9951	23.881	4.358				
Total HAP Emissions	0.6378	15.308	2.794				

Flash Gas Emissions			
Pollutant	(lbs/hr)	(lbs/day)	(tons/y
Carbon dioxide	2	57	10
Methane	0.6821	16.371	2.988
Ethane	0.5151	12.362	2.256
Propane	0.2467	5.921	1.081
Isobutane	0.0471	1.131	0.206
n-Butane	0.1040	2.496	0.456
Isopentane	0.0299	0.718	0.131
n-Pentane	0.0334	0.800	0.146
n-Hexane*	0.0177	0.426	0.078
Cyclohexane	0.0057	0.136	0.025
Other Hexanes	0.0232	0.556	0.101
Heptanes	0.0268	0.644	0.118
2,2,4-Trimethylpentane*	0.0112	0.268	0.049
Benzene*	0.0023	0.056	0.010
Toluene*	0.0041	0.098	0.018
Ethylbenzene*	0.0004	0.010	0.002
Xylenes*	0.0020	0.049	0.009
C8+ Heavier Hydrocarbons	0.0025	0.060	0.011
Total Emissions	1.7543	42.103	7.684
Total Hydrocarbon Emissions	1.7543	42.103	7.684
Total VOC Emissions	0.5571	13.370	2.440
Total HAP Emissions	0.0378	0.907	0.166

GRI-GLYCalc Version 4.0 - EMISSIONS SUMMARY ¹ Combined Regenerator and Flash Gas Emissions ²					
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)		
Carbon dioxide	3.2800	78.7200	14.3664		
Methane	0.7055	16.934	3.0904		
Ethane	0.5774	13.857	2.5288		
Propane	0.3087	7.409	1.3521		
Isobutane	0.0649	1.558	0.2843		
n-Butane	0.1551	3.723	0.6795		
Isopentane	0.0467	1.121	0.2045		
n-Pentane	0.0566	1.358	0.2479		
n-Hexane*	0.0399	0.960	0.1751		
Cyclohexane	0.0345	0.828	0.1511		
Other Hexanes	0.0453	1.086	0.1981		
Heptanes	0.0957	2.299	0.4196		
2,2,4-Trimethylpentane*	0.0257	0.617	0.1126		
Benzene*	0.0822	1.974	0.3604		
Toluene*	0.2205	5.291	0.9656		
Ethylbenzene*	0.0391	0.939	0.1714		
Xylenes*	0.2680	6.434	1.1743		
C8+ Heavier Hydrocarbons	0.0689	1.654	0.3019		
Total Emissions	2.8351	68.041	12.4175		
Total Hydrocarbon Emissions	2.8351	68.041	12.4175		
Total VOC Emissions	1.5522	37.251	6.7983		
Total HAP Emissions	0.6756	16.215	2.9593		

Enclosed Flare (FLARE-1 & FLARE-2) Emissions Calculations:

Combustor Rating	7.0 MMbtu/hr
Pilot Rating	0.09 MMbtu/hr
Higher Heating Value (HHV)	1,226 btu/scf

Pollutant	Emission	Combustor		Pi	lot
	Factors ^a	Potential Emissions		Potential	Emissions
	(lb/MMBtu)	(lb/hr) (tpy)		(lb/hr)	(tpy)
$\begin{array}{l} NO_{x} \\ CO \\ PM/PM_{10} \\ SO_{2} \\ CO_{2}^{\ b} (Natural Gas Firing) \\ CH_{4}^{\ b} (Natural Gas Firing) \\ N_{2}O^{\ b} (Natural Gas Firing) \end{array}$	0.082	0.571	2.500	0.007	0.032
	0.069	0.480	2.100	0.006	0.027
	0.006	0.043	0.190	0.0006	0.002
	0.000	0.003	0.015	4.40E-05	1.93E-04
	116.997	818.981	3,587.137	10.530	46.120
	0.002	0.015	0.068	1.98E-04	8.69E-04
	0.000	0.002	0.007	1.98E-05	8.69E-05

^a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3 & 1.4-4.
 ^b GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

*HAPs

¹ Based on GRI GLYCalc 4.0 run at dry gas flowrate of 125 MMSCFD and T and P of 75°F and 1200 psig, respectively. Still emissions are controlled by the enclosed flare at a destruction efficiency of 98%. Flash tank emissions will be routed to the reboiler for use as fuel, with the flare as backup for excess. This is expected to achieve 98% destruction efficiency.

Reboilers (Per Unit)

Source Designation:	
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,226
Heat Input (MMBtu/hr)	2.31
Fuel Consumption (MMscf/hr):	1.88E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potenti	al Emissions
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c
NO _x	100	1.88E-01	8.25E-01
СО	84	1.58E-01	6.93E-01
SO ₂	0.6	1.13E-03	4.95E-03
PM Total	7.6	1.43E-02	6.27E-02
PM Condensable	5.7	1.07E-02	4.70E-02
PM ₁₀ (Filterable)	1.9	3.58E-03	1.57E-02
PM _{2.5} (Filterable)	1.9	3.58E-03	1.57E-02
VOC	5.5	1.04E-02	4.54E-02
CO2 ^d (Natural Gas Firing)	143,462	270.26	1183.76
CH4 ^d (Natural Gas Firing)	2.7	5.09E-03	2.23E-02
N ₂ O ^d (Natural Gas Firing)	0.27 5.09E-04 2.23		

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c	
HAPs:				
3-Methylchloranthrene	1.8E-06	3.39E-09	1.49E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	3.01E-08	1.32E-07	
Acenaphthene	1.8E-06	3.39E-09	1.49E-08	
Acenaphthylene	1.8E-06	3.39E-09	1.49E-08	
Anthracene	2.4E-06	4.52E-09	1.98E-08	
Benz(a)anthracene	1.8E-06	3.39E-09	1.49E-08	
Benzene	2.1E-03	3.96E-06	1.73E-05	
Benzo(a)pyrene	1.2E-06	2.26E-09	9.90E-09	
Benzo(b)fluoranthene	1.8E-06	3.39E-09	1.49E-08	
Benzo(g,h,i)perylene	1.2E-06	2.26E-09	9.90E-09	
Benzo(k)fluoranthene	1.8E-06	3.39E-09	1.49E-08	
Chrysene	1.8E-06	3.39E-09	1.49E-08	
Dibenzo(a,h) anthracene	1.2E-06	2.26E-09	9.90E-09	
Dichlorobenzene	1.2E-03	2.26E-06	9.90E-06	
Iuoranthene	3.0E-06 5.65E-09		2.48E-08	
Iuorene	2.8E-06	5.27E-09	2.31E-08	
Formaldehyde	7.5E-02	1.41E-04	6.19E-04	
Iexane	1.8E+00	3.39E-03	1.49E-02	
ndo(1,2,3-cd)pyrene	1.8E-06	3.39E-09	1.49E-08	
Phenanthrene	1.7E-05	3.20E-08	1.40E-07	
Pyrene	5.0E-06	9.42E-09	4.13E-08	
Foluene	3.4E-03	6.41E-06	2.81E-05	
Arsenic	2.0E-04	3.77E-07	1.65E-06	
Beryllium	1.2E-05	2.26E-08	9.90E-08	
Cadmium	1.1E-03 2.07E-06		9.08E-06	
Chromium	1.4E-03			
Cobalt	8.4E-05	8.4E-05 1.58E-07		
ead	5.0E-04	9.42E-07	4.13E-06	
Manganese	3.8E-04	7.16E-07	3.14E-06	
Mercury	2.6E-04	4.90E-07	2.15E-06	
Vickel	2.1E-03	3.96E-06	1.73E-05	
Selenium	2.4E-05	4.52E-08	1.98E-07	
Polycyclic Organic Matter:				
Methylnaphthalene (2-)	2.4E-05	4.52E-08	1.98E-07	
Naphthalene	6.1E-04	1.15E-06	5.03E-06	
Fotal HAP	•	3.56E-03	1.56E-02	

^a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3 & 1.4-4.

 $^{\rm b}$ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

 c Annual Emissions (tons/yr)_{Octential} = (lb/hr)_{Emissions}× (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). d GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fuel Gas Heater 1

Source Designation:	
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,226
Heat Input (MMBtu/hr)	1.15
Fuel Consumption (MMscf/hr):	9.38E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potenti	al Emissions
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c
NOx	100	0.09	0.41
СО	84	0.08	0.35
SO ₂	0.6	5.63E-04	2.46E-03
PM Total	7.6	0.01	0.03
PM Condensable	5.7	0.01	0.02
PM ₁₀ (Filterable)	1.9	1.78E-03	7.80E-03
PM _{2.5} (Filterable)	1.9	1.78E-03	7.80E-03
VOC	5.5	0.01	0.02
CO2 ^d (Natural Gas Firing)	143,462	134.55	589.32
CH4 ^d (Natural Gas Firing)	2.7	2.54E-03	1.11E-02
N ₂ O ^d (Natural Gas Firing)	0.27	2.54E-04	1.11E-03

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor		l Emissions
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c
HAPs:			
3-Methylchloranthrene	1.8E-06	1.69E-09	7.39E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.50E-08	6.57E-08
Acenaphthene	1.8E-06	1.69E-09	7.39E-09
Acenaphthylene	1.8E-06	1.69E-09	7.39E-09
Anthracene	2.4E-06	2.25E-09	9.86E-09
Benz(a)anthracene	1.8E-06	1.69E-09	7.39E-09
Benzene	2.1E-03	1.97E-06	8.63E-06
Benzo(a)pyrene	1.2E-06	1.13E-09	4.93E-09
Benzo(b)fluoranthene	1.8E-06	1.69E-09	7.39E-09
Benzo(g,h,i)perylene	1.2E-06	1.13E-09	4.93E-09
Benzo(k)fluoranthene	1.8E-06	1.69E-09	7.39E-09
Chrysene	1.8E-06	1.69E-09	7.39E-09
Dibenzo(a,h) anthracene	1.2E-06	1.13E-09	4.93E-09
Dichlorobenzene	1.2E-03	1.13E-06	4.93E-06
Fluoranthene	3.0E-06	2.81E-09	1.23E-08
Fluorene	2.8E-06	2.63E-09	1.15E-08
Formaldehyde	7.5E-02	7.03E-05	3.08E-04
Hexane	1.8E+00	1.69E-03	7.39E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.69E-09	7.39E-09
Phenanthrene	1.7E-05	1.59E-08	6.98E-08
Pyrene	5.0E-06	4.69E-09	2.05E-08
Toluene	3.4E-03	3.19E-06	1.40E-05
Arsenic	2.0E-04	1.88E-07	8.22E-07
Beryllium	1.2E-05	1.13E-08	4.93E-08
Cadmium	1.1E-03	1.03E-06	4.52E-06
Chromium	1.4E-03	1.31E-06	5.75E-06
Cobalt	8.4E-05	7.88E-08	3.45E-07
Lead	5.0E-04	4.69E-07	2.05E-06
Manganese	3.8E-04	3.56E-07	1.56E-06
Mercury	2.6E-04	2.44E-07	1.07E-06
Nickel	2.1E-03	1.97E-06	8.63E-06
Selenium	2.4E-05	2.25E-08	9.86E-08
Polycyclic Organic Matter:			
Methylnaphthalene (2-)	2.4E-05	2.25E-08	9.86E-08
Naphthalene	6.1E-04	5.72E-07	2.51E-06
Fotal HAP		1.77E-03	7.76E-03

^a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3 & 1.4-4.

 $^{\rm b}$ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

 c Annual Emissions (tons/yr)_{Octential} = (lb/hr)_{Emissions}× (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). d GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fuel Gas Heater 2

Source Designation:	
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,226
Heat Input (MMBtu/hr)	0.77
Fuel Consumption (MMscf/hr):	6.28E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potentia	Emissions
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c
NO _x	100	0.06	0.28
со	84	0.05	0.23
SO ₂	0.6	3.77E-04	1.65E-03
PM Total	7.6	4.77E-03	2.09E-02
PM Condensable	5.7	3.58E-03	1.57E-02
PM ₁₀ (Filterable)	1.9	1.19E-03	5.23E-03
PM _{2.5} (Filterable)	1.9	1.19E-03	5.23E-03
VOC	5.5	3.45E-03	1.51E-02
CO2 ^d (Natural Gas Firing)	143,462	90.09	394.59
CH4 ^d (Natural Gas Firing)	2.7	1.70E-03	7.44E-03
N ₂ O ^d (Natural Gas Firing)	0.27	1.70E-04	7.44E-04

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^a	(lb/hr) ^b	(tons/yr) ^c		
HAPs:					
3-Methylchloranthrene	1.8E-06	1.13E-09	4.95E-09		
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.00E-08	4.40E-08		
Acenaphthene	1.8E-06	1.13E-09	4.95E-09		
Acenaphthylene	1.8E-06	1.13E-09	4.95E-09		
Anthracene	2.4E-06	1.51E-09	6.60E-09		
Benz(a)anthracene	1.8E-06	1.13E-09	4.95E-09		
Benzene	2.1E-03	1.32E-06	5.78E-06		
Benzo(a)pyrene	1.2E-06	7.54E-10	3.30E-09		
Benzo(b)fluoranthene	1.8E-06	1.13E-09	4.95E-09		
Benzo(g,h,i)perylene	1.2E-06	7.54E-10	3.30E-09		
Benzo(k)fluoranthene	1.8E-06	1.13E-09	4.95E-09		
Chrysene	1.8E-06	1.13E-09	4.95E-09		
Dibenzo(a,h) anthracene	1.2E-06	7.54E-10	3.30E-09		
Dichlorobenzene	1.2E-03	7.54E-07	3.30E-06		
Fluoranthene	3.0E-06	1.88E-09	8.25E-09		
Fluorene	2.8E-06	1.76E-09	7.70E-09		
Formaldehyde	7.5E-02	4.71E-05	2.06E-04		
Hexane	1.8E+00	1.13E-03	4.95E-03		
ndo(1,2,3-cd)pyrene	1.8E-06	1.13E-09	4.95E-09		
Phenanthrene	1.7E-05	1.07E-08	4.68E-08		
Pyrene	5.0E-06	3.14E-09	1.38E-08		
Foluene	3.4E-03	2.14E-06	9.35E-06		
Arsenic	2.0E-04	1.26E-07	5.50E-07		
Beryllium	1.2E-05	7.54E-09	3.30E-08		
Cadmium	1.1E-03	6.91E-07	3.03E-06		
Chromium	1.4E-03	8.79E-07	3.85E-06		
Cobalt	8.4E-05	5.27E-08	2.31E-07		
Lead	5.0E-04	3.14E-07	1.38E-06		
Manganese	3.8E-04	2.39E-07	1.05E-06		
Mercury	2.6E-04	1.63E-07	7.15E-07		
Vickel	2.1E-03	1.32E-06	5.78E-06		
Selenium	2.4E-05	1.51E-08	6.60E-08		
Polycyclic Organic Matter:	•				
Methylnaphthalene (2-)	2.4E-05	1.51E-08	6.60E-08		
Naphthalene	6.1E-04	3.83E-07	1.68E-06		
Fotal HAP	· ·	1.19E-03	5.19E-03		

^a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3 & 1.4-4.

 $^{\rm b}$ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

 c Annual Emissions (tons/yr)_{Octential} = (lb/hr)_{Emissions}× (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). d GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Storage Tank Emissions												
Tank Description	Tank Contents	Tank ID Number	Number of Tanks	Tank Capacity (gal)	Tank Diameter (ft)	Tank Length (ft)	Turnovers Per Year	Annual Throughput (gal)	VOC Emissions Per Tank (lb/yr)	Total VOC Emissions (tpy)	HAP Emissions Per Tank (lb/yr)	Total HAP Emissions (tpy)
Produced Fluids Tank	Produced Water	T-001	1	8,820	10	15.0	12	105,000	418.73	0.209	10.074	0.01
Produced Fluids Tank	Produced Water	T-002	1	8,820	10	15.0	12	105,000	418.73	0.209	10.074	0.01
Engine Lube Oil Tank	Engine Lube Oil	T-003	1	2,000	5.33	12.0	2	4,200	0.65	0.000	< 0.01	< 0.01
Compressor Lube Oil Tank	Compressor Oil	T-004	1	2,000	5.33	12.0	4	7,266	0.70	3.50E-04	< 0.01	< 0.01
New MEG Tank	New MEG	T-005	1	2,000	5.33	12.0	1	1,050	0.04	2.00E-05	< 0.01	< 0.01
Used MEG Tank	Used MEG	T-006	1	2,000	5.33	12.0	1	1,050	0.04	2.00E-05	< 0.01	< 0.01
Used Oil Tank	Used Oil	T-007	1	4,200	5.33	25.1	1	4,200	1.27	6.35E-04	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-008	1	3,998	5.33	23.9	5	21,000	0.11	5.50E-05	< 0.01	< 0.01
Engine Lube Oil Tank	Engine Oil	T-009	1	302	3.2	5.1	3	1,050	0.11	5.50E-05	< 0.01	< 0.01
Engine Lube Oil Tank	Engine Oil	T-010	1	302	3.2	5.1	3	1,050	0.11	5.50E-05	< 0.01	< 0.01
Engine Lube Oil Tank	Engine Oil	T-011	1	302	3.2	5.1	3	1,050	0.11	5.50E-05	< 0.01	< 0.01
Engine Lube Oil Tank	Engine Oil	T-012	1	302	3.2	5.1	3	1,050	0.11	5.50E-05	< 0.01	< 0.01
Compressor Lube Oil Tank	Compressor Oil	T-013	1	302	3.2	5.1	6	1,806	0.11	5.50E-05	< 0.01	< 0.01
Compressor Lube Oil Tank	Compressor Oil	T-014	1	302	3.2	5.1	6	1,806	0.11	5.50E-05	< 0.01	< 0.01
Compressor Lube Oil Tank	Compressor Oil	T-015	1	302	3.2	5.1	6	1,806	0.11	5.50E-05	< 0.01	< 0.01
Compressor Lube Oil Tank	Compressor Oil	T-016	1	302	3.2	5.1	6	1,806	0.11	5.50E-05	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-017	1	550	4.2	5.4	6	3,486	0.02	1.00E-05	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-018	1	550	4.2	5.4	6	3,486	0.02	1.00E-05	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-019	1	550	4.2	5.4	6	3,486	0.20	1.0E-04	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-020	1	550	4.2	5.4	6	3,486	0.06	3.0E-05	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-021	1	550	4.2	5.4	6	3,486	0.06	3.0E-05	< 0.01	< 0.01
Ice-chek Tank	Ice-chek	T-022	1	550	4.2	5.4	6	3,486	0.06	3.0E-05	< 0.01	< 0.01
New TEG Tank	New TEG	T-023	1	2,000	5.3	12.0	2	4,200	0.05	2.5E-05	< 0.01	< 0.01
Used TEG Tank	Used TEG	T-024	1	2,000	5.3	12.0	2	4,200	0.05	2.5E-05	< 0.01	< 0.01
Total Potential Emissions (excludin	ng pipeline fluids tanks)	•	•	•					4.21	0.00	0.000	0.00

1. Ice-Chek contains ethylene glycol

Produced Fluids Tank (210 bbl) - T001 & T002 Operational Hours 8,760 hrs/yr

Operational Hours	
-------------------	--

Control Efficiency Annual Fluid Throughput (per tank) 95% 105,000 gal/yr

Description	Potential Throughput ¹ (gal/yr)
Produced Water	105,000

¹ Based on engineering estimate of produced water for the station. Produced water comprises of 90% water and 10% condensate

Storage Tank (210 bbl, each) - Emissions (Each Tank)

	Uncont	trolled	Controlled		
	Total Em	issions ¹	Total Emissions ¹		
Constituent	lb/hr	tpy	lb/hr	tpy	
Carbon Dioxide	0.002	0.007	0.002	0.007	
Methane	0.158	0.692	0.008	0.035	
Ethane	0.149	0.651	0.007	0.033	
Propane	0.273	1.194	0.014	0.060	
Isobutane	0.192	0.841	0.010	0.042	
n-Butane	0.181	0.791	0.009	0.040	
Isopentane	0.149	0.653	0.007	0.033	
n-Pentane	0.063	0.276	0.003	0.014	
n-Hexane	0.019	0.085	0.001	0.004	
Other Hexanes	0.047	0.204	0.002	0.010	
Heptanes	0.022	0.095	0.001	0.005	
Benzene	0.001	0.005	0.000	0.000	
Toluene	0.001	0.005	0.000	0.000	
Ethylbenzene	< 0.001	< 0.001	< 0.001	< 0.001	
Xylenes	0.000	0.002	0.000	0.000	
2,2,4-Trimethylpentane	< 0.001	< 0.001	< 0.001	< 0.001	
C8+ Heavies	0.008	0.036	0.000	0.002	
Total Emissions:	1.262	5.529	0.063	0.276	
Total VOC Emissions:	0.956	4.186	0.048	0.209	
Total HAP Emissions:	0.023	0.100	0.001	0.005	

¹ E&P TANK v2.0 calculates working, breathing and flashing losses and reports the sum as one total. The proposed control system includes an enclosed flare which will achieve 95% control of HAP and VOC.

Tank Enclosed Flare

Enclosed Ground Flare Calculations:

Combustor Rating	41.0 MMbtu/hr
Hours Of Operation	8760 hrs
Pilot Rating	0.12 MMbtu/hr
Higher Heating Value (HHV)	1,226 btu/scf

	Emission	Combustor		Pilot	
	Factors ^a	Potential Emissions		Potential Emissions	
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.082	3.34	14.65	0.01	0.04
СО	0.069	2.81	12.30	0.01	0.04
PM/PM ₁₀	0.006	0.25	1.11	7.60E-04	3.33E-03
SO_2	0.000	0.02	0.09	6.00E-05	2.63E-04
CO ₂ ^b (Natural Gas Firing)	116.997	4796.89	21010.38	14.35	62.84
CH4 ^b (Natural Gas Firing)	0.002	0.09	0.40	2.70E-04	1.18E-03
N ₂ O ^b (Natural Gas Firing)	0.000	0.01	0.04	2.70E-05	1.18E-04

^a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3 & 1.4-4.

^b GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Processing
]

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	РМ	Emissions (tpy) PM ₁₀	PM _{2.5}
Liquids Hauling	20	40	30	0.75	53	39	0	0.08	0.02	0.002
Employee Vehicles	3	3	3	0.75	200	150	0	0.11	0.03	0.003
Total Potential Emissions	•							0.20	0.05	0.01

Fugitive Emissions

Fugitive Component Information:

	Estimated	Gas Leak Emission Factor		Average Gas Leak Rate	Max Gas Leak Rate	Potential VOC Emissions	Potential HAP Emissions
Component Type	Component Count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)
Connectors	650	0.0004	EPA Protocol, Table 2-4	0.29	1.51	0.23	0.01
Flanges	250	0.001	EPA Protocol, Table 2-4	0.21	1.13	0.17	0.01
Open-Ended Lines	12	0.004	EPA Protocol, Table 2-4	0.05	0.28	0.04	0.00
Valves	700	0.010	EPA Protocol, Table 2-4	6.94	36.50	5.65	0.31
Total				7.50	39.41	6.10	0.33

Notes:

1. The component type "Other" includes any equipment type other than connectors, flanges, open-ended lines, pumps and valves that have fugitive emissions.

2. The component count is a preliminary estimate based on the proposed design of the station

3. Table 2-4 : Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.

4. Assumes maximum leak rate 20% greater than measured average leak rate.

GHG Fugitive Emissions from Component Leaks:

	Estimated	GHG E	mission Factor	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
Component Type	Component Count	(scf/hr/component)	Factor Source	(tpy)	(tpy)	(tpy)
Connectors	650	0.003	40 CFR 98, Table W-1A	0.29	1.9E-03	7.29
Flanges	250	0.003	40 CFR 98, Table W-1A	0.11	7.2E-04	2.80
Open-Ended Lines	12	0.061	40 CFR 98, Table W-1A	0.11	7.1E-04	2.74
Valves	700	0.027	40 CFR 98, Table W-1A	2.83	1.8E-02	70.66
	Total			3.34	0.02	83.49

Notes:

1. The component count is a preliminary estimate based on the proposed design of the station

2. Table W-1 of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W.

3. Calculated in accordance with Equations W-32a, W-35, and W-36 in Subpart W of 40 CFR 98.

4. GHG (CO2e) is carbon dioxide equivalent, which is the summation of CO2 (GWP = 1) + CH4 (GWP = 25) + N2O (GWP = 298).

VOC/GHG Fugitive Emissions from Blowdowns:

Blowdown Type	Number of Events	Gas Volume (scf/event)	VOC Emissions (tpy)	HAP Emissions (tpy)	CH ₄ Emissions (tpy)	CO ₂ Emissions (tpy)	CO ₂ e Emissions (tpy)
Station ESD	1	358,000	1.20	0.04	6.11	0.04	152.79
Pigging Operations	3	100,000	1.01	0.03	5.12	0.03	128.04
Filter Maintenance	2	22,800	0.15	< 0.01	0.78	0.01	19.46
Compressor	24	44,000	3.55	0.11	18.02	0.12	450.70
Total			5.91	0.18	30.03	0.19	750.99

Notes:

1. CH_4 and CO_2 emissions are based on fractions of these pollutants in the site-specific gas analysis.

2. Emissions are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

3. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

Fugitive Component Emissions Data:

Pollutant	Atmosp	heric Emissions	Emissions Estimation Method		
Tonutant	lbs/hr	tpy			
VOC	2.74	12.01	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis		
HAPs	0.12	0.51	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis		
GHG (CO ₂ e)	191	834	40 CFR 98, Table W-1A and Site-Specific Gas Analysis		

Liquid Loading

Liquid Loading Emissions

Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T

S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Р	0.21	true vapor pressure of liquid loaded (Psia) - assume octane
М	116.02	molecular weight of vapors (lb/lb-mol) - E&P Tank Data
Т	530.0	temperature of liquids loaded (deg R)

Description	Loading Losses (lb/10 ³ gal)	Maximum Throughput (gal)	VOC Emissions (tpy)
Produced Water	0.8	210,000	0.09

1. No HAPs present in the liquid stream

Gas Analysis

Higher Heating Value

1,226 btu/scf

Constituent	Concentration (Vol %)	Molecular Weight	Molar Weight	Average Weight Fraction	Stream Speciation (Wt. %)
Carbon Dioxide	0.190%	44.01	0.08	0.00	0.42
Nitrogen	0.466%	28.014	0.13	0.01	0.65
Methane	80.644%	16.04	12.94	0.64	64.22
Ethane	12.891%	30.07	3.88	0.19	19.25
Propane	3.575%	44.10	1.58	0.08	7.83
Isobutane	0.455%	58.12	0.26	0.01	1.31
n-Butane	0.834%	58.12	0.48	0.02	2.41
Isopentane	0.230%	72.15	0.17	0.01	0.82
n-Pentane	0.214%	72.15	0.15	0.01	0.77
n-Hexane*	0.088%	86.18	0.08	0.00	0.38
Cyclohexane	0.016%	84.16	0.01	0.00	0.07
Other Hexanes	0.128%	86.18	0.11	0.01	0.55
Heptanes	0.112%	100.20	0.11	0.01	0.56
2,2,4-Trimethylpentane*	0.069%	114.23	0.08	0.00	0.39
Benzene*	0.004%	78.11	0.00	0.00	0.02
Toluene*	0.007%	92.14	0.01	0.00	0.03
Ethylbenzene*	0.001%	106.17	0.00	0.00	0.01
Xylenes*	0.005%	106.16	0.01	0.00	0.03
C8+ Heavies	0.055%	114.23	0.06	0.00	0.31
Totals	99.98%		20.14	1.00	100.00

*HAPs

TOC (Total)	99.33%	98.94
VOC (Total)	5.79%	15.47
HAP (Total)	0.17%	0.85

CERTIFICATE OF ANALYSIS

Number: 2012100194-001A

LAFAYETTE AREA LABORATORY 4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Gas Analytical Services Chuck Honaker PO Box 1028

Bridgeport, WV 26330

Field:	EQT Midstream	Report Date:	10/23/12
Station:	Main Suction after Recycle	Sample Of:	Gas
Station No.:		Sample Date:	10/10/2012
Sample Point:		Sample Conditions:	236 psi ,N.G.° F
Cylinder # :	GAS	PO / Ref. No.:	

Comments:

comments.	Δ	NALYTIC	AL DATA			
Components	Mol %	Wt%	GPM at	Method	Lab	Date
			14.730 psia		Tech.	Analyzed
				GPA-2286	CC	10/23/12
Nitrogen	0.466	0.649	0.051	(MC10)		
Methane	80.644	64.134	13.668			
Carbon Dioxide	0.190	0.416	0.032			
Ethane	12.891	19.215	3.447			
Propane	3.575	7.813	0.985			
iso Butane	0.455	1.309	0.149			
n-Butane	0.834	2.404	0.263			
iso Pentane	0.230	0.823	0.084			
n-Pentane	0.214	0.763	0.078			
i-Hexanes	0.128	0.543	0.052			
n-Hexane	0.088	0.373	0.036			
Benzene	0.004	0.014	0.001			
Cyclohexane	0.016	0.068	0.006			
I-Heptanes	0.072	0.358	0.032			
n-Heptane	0.040	0.200	0.018			
Toluene	0.007	0.031	0.002			
i-Octanes	0.069	0.360	0.031			
n-Octane	0.016	0.089	0.008			
*e-Benzene	0.001	0.003	NIL			
*m,o,&p-Xylene	0.005	0.026	0.002			
i-Nonanes	0.017	0.102	0.008			
n-Nonane	0.005	0.032	0.003			
i-Decanes	0.004	0.039	0.003			
n-Decane Plus	0.002	0.015	0.001			
i-Undecanes	_0.027	0.221	0.019			
Totals	100.000	100.000	18.980			
Calculated Values	TOTAL	C10+				
Molecular Weight	20.172	159.200				
Real Dry BTU @ 14.73 psia, 60 °F	1226.2	8681.3				
Real Wet BTU @ 14.73 psia, 60 °F	1205.7	8531.1				
Relative Density	0.6982	5.5140				
	TOTAL					
GPM's at 14.73 psia, 60 °F	18.980					
Compressibility Factor	0.9967					

an Data Reviewer

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: EQT - Janus Compressor Station Dehys 1 & 2
File Name: Z:\Client\EQT Corporation\West Virginia\Janus\153901.0106 R13 Application\04
Draft\2015-0708 Janus R13 Application\Attach N - Emission
Calculations\GRI-GLYCalc\2015-0710_EQT_Janus_R13_Dehys1&2.ddf
 Date: July 10, 2015

DESCRIPTION:

Description: Potential-to-emit for R13 application

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0234	0.563	0.1027
Ethane	0.0623		0.2728
Propane	0.0620	1.488	0.2716
Isobutane	0.0178	0.427	0.0779
n-Butane	0.0511	1.227	0.2239
Isopentane	0.0168	0.403	0.0735
n-Pentane	0.0232	0.558	0.1018
n-Hexane	0.0222	0.534	0.0974
Cyclohexane	0.0288	0.692	0.1263
Other Hexanes	0.0221	0.530	0.0967
Heptanes	0.0689	1.655	0.3020
2,2,4-Trimethylpentane	0.0145	0.349	0.0637
Benzene	0.0799	1.918	0.3501
Toluene	0.2164	5.193	0.9477
Ethylbenzene	0.0387	0.929	0.1695
Xylenes	0.2660	6.385	1.1653
C8+ Heavies	0.0664	1.594	0.2909
Total Emissions	1.0808	25.938	4.7337
Total Hydrocarbon Emissions	1.0808	25.938	4.7337
Total VOC Emissions	0.9951	23.881	4.3583
Total HAP Emissions	0.6378	15.308	2.7937
Total BTEX Emissions	0.6010	14.425	2.6325

CONTROLLED REGENERATOR EMISSIONS

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.1719	28.126	5.1329
Ethane	3.1137	74.728	13.6379
Propane	3.1008	74.420	13.5817
Isobutane	0.8896	21.349	3.8962
n-Butane	2.5556	61.333	11.1933
Isopentane	0.8392	20.142	3.6758
n-Pentane	1.1622	27.892	5.0904
n-Hexane	1.1123	26.696	4.8719
Cyclohexane	1.4420	34.608	6.3160
Other Hexanes	1.1042	26.502	4.8365

Page: 1

Page: 2

Heptanes	3.4473	82.736	15.0993
2,2,4-Trimethylpentane	0.7273	17.456	3.1856
Benzene	3.9966	95.919	17.5052
Toluene	10.8182	259.637	47.3838
Ethylbenzene	1.9347	46.433	8.4740
Xylenes	13.3021	319.249	58.2630
C8+ Heavies	3.3204	79.688	14.5431
Total Emissions	54.0381	1296.914	236.6868
Total Hydrocarbon Emissions	54.0381	1296.914	236.6868
Total VOC Emissions	49.7525	1194.060	217.9160
Total HAP Emissions	31.8912	765.389	139.6835
Total BTEX Emissions	30.0516	721.238	131.6259

FLASH GAS EMISSIONS

lbs/hr	lbs/day	tons/yr
0 6001	16 271	2.9877
		2.2560
		1.0805
		0.2064
0.1040	2.496	0.4556
0.0299	0.718	0.1310
0.0334	0.800	0.1461
0.0177	0.426	0.0777
0.0057	0.136	0.0248
0.0232	0.556	0.1014
0.0268	0.644	0.1176
0.0112	0.268	0.0489
0.0023	0.056	0.0103
0.0041	0.098	0.0179
0.0004	0.010	0.0019
0.0020	0.049	0.0090
0.0025	0.060	0.0110
1.7543	42.103	7.6838
1.7543	42.103	7.6838
0.5571	13.370	2.4400
0.0378		0.1656
		0.0390
	0.6821 0.5151 0.2467 0.0471 0.1040 0.0299 0.0334 0.0177 0.0057 0.0232 0.0268 0.0112 0.0023 0.0041 0.0004 0.0020 0.0025 1.7543 1.7543 0.5571	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	34.1066 25.7535 12.3347 2.3560 5.2007	818.557 618.084 296.032 56.543 124.816	149.3867 112.8003 54.0258 10.3191 22.7790
Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	1.4959 1.6675 0.8869 0.2829 1.1579	35.902 40.021 21.285 6.790 27.790	6.5521 7.3038 3.8844 1.2392 5.0717
Heptanes	1.3424	32.219	5.8799

2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	0.5581 0.1173 0.2048 0.0212	13.394 2.815 4.915 0.508	Page: 3 2.4444 0.5138 0.8970 0.0928
Xylenes	0.1022	2.453	0.4476
C8+ Heavies	0.1259	3.022	0.5516
Total Emissions	87.7144	2105.146	384.1891
Total Hydrocarbon Emissions	87.7144	2105.146	384.1891
Total VOC Emissions	27.8544	668.504	122.0021
Total HAP Emissions	1.8904	45.370	8.2800
Total BTEX Emissions	0.4455	10.691	1.9511

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature:	70.00	deg. F
Excess Oxygen:	10.00	010
Combustion Efficiency:	98.00	010
Supplemental Fuel Requirement:	2.66e-001	MM BTU/hr

Component	Emitted	Destroyed
Methane Ethane Propane Isobutane n-Butane	2.00% 2.00% 2.00% 2.00% 2.00%	98.00% 98.00% 98.00% 98.00% 98.00% 98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
2,2,4-Trimethylpentane	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
Ethylbenzene	2.00%	98.00%
Xylenes	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 1.00	lbs. H2O/MMSCF
Temperature: Pressure: Dry Gas Flow Rate:	1200.0	

Glycol Losses with Dry Gas: 2.2907 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 24.78 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 9.10 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.04%	95.96%
Carbon Dioxide	99.71%	0.29%
Nitrogen	99.97%	0.03%
Methane	99.98%	0.02%
Ethane	99.95%	0.05%
Propane	99.93%	0.07%
Isobutane	99.91%	0.09%
n-Butane	99.88%	0.12%
Isopentane	99.90%	0.10%
n-Pentane	99.87%	0.13%
n-Hexane	99.81%	0.19%
Cyclohexane	99.07%	0.93%
Other Hexanes	99.85%	0.15%
Heptanes	99.69%	0.31%
2,2,4-Trimethylpentane	99.88%	0.12%
Benzene	90.41%	9.59%
Toluene	87.55%	12.45%
Ethylbenzene	86.58%	13.42%
Xylenes	81.61%	18.39%
C8+ Heavies	99.73%	0.27%

FLASH TANK

	Flash Control:	Combustion device
Flash	Control Efficiency:	98.00 %
	Flash Temperature:	135.0 deg. F
	Flash Pressure:	35.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.93%	0.07%
Carbon Dioxide	27.75%	72.25%
Nitrogen	3.25%	96.75%
Methane	3.32%	96.68%
Ethane	10.79%	89.21%
Propane	20.09%	79.91%
Isobutane	27.41%	72.59%
n-Butane	32.95%	67.05%
Isopentane	36.26%	63.74%
n-Pentane	41.37%	58.63%
n-Hexane	55.86%	44.14%
Cyclohexane	84.12%	15.88%
Other Hexanes	49.33%	50.67%
Heptanes	72.11%	27.89%
2,2,4-Trimethylpentane	57.23%	42.77%
Benzene	97.29%	2.71%
Toluene	98.29%	1.71%
Ethylbenzene	99.03%	0.97%
Xylenes	99.34%	0.66%
C8+ Heavies	96.78%	3.22%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Nitrogen Methane Ethane	56.19% 0.00% 0.00% 0.00% 0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.00% 1.38% 1.21%	100.00%
n-Hexane Cyclohexane Other Hexanes Heptanes 2,2,4-Trimethylpentane	0.89% 3.80% 2.03% 0.69% 2.62%	99.11% 96.20% 97.97% 99.31% 97.38%
Benzene Toluene Ethylbenzene Xylenes C8+ Heavies	5.14% 8.04% 10.51% 13.01% 12.41%	94.86% 91.96% 89.49% 86.99% 87.59%

STREAM REPORTS:

WET GAS STREAM

Pressure:	75.00 deg. F 1214.70 psia 5.21e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	5.22e-002 1.90e-001 4.66e-001 8.06e+001 1.29e+001	1.15e+003 1.79e+003 1.78e+005
	Isobutane n-Butane Isopentane	3.57e+000 4.55e-001 8.34e-001 2.30e-001 2.14e-001	3.63e+003 6.66e+003 2.28e+003
2,2,4	Cyclohexane Other Hexanes	1.28e-001 1.12e-001	1.85e+002 1.51e+003 1.54e+003
		4.00e-003 7.00e-003	

Ethylbenzene 1.00e-003 1.46e+001 Xylenes 5.00e-003 7.29e+001 C8+ Heavies 5.50e-002 1.29e+003 ----- ------Total Components 100.00 2.77e+005

DRY GAS STREAM		
Temperature: 75.00 deg. F Pressure: 1214.70 psia Flow Rate: 5.21e+006 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.11e-003 1.90e-001 4.66e-001 8.07e+001 1.29e+001	1.15e+003 1.79e+003 1.78e+005
Isobutane n-Butane Isopentane	3.57e+000 4.55e-001 8.33e-001 2.30e-001 2.14e-001	3.63e+003 6.65e+003 2.28e+003
Cyclohexane Other Hexanes	1.28e-001 1.12e-001	1.83e+002 1.51e+003 1.54e+003
Toluene Ethylbenzene	4.08e-003 5.49e-002	7.76e+001 1.26e+001 5.95e+001
Total Components		
LEAN GLYCOL STREAM		
Temperature: 75.00 deg. F Flow Rate: 1.88e+001 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 3.10e-012 4.27e-013 1.12e-017	1.59e+002 3.28e-010 4.51e-011
Propane Isobutane	1.29e-007 5.94e-009 9.20e-010 1.82e-009 1.11e-004	6.28e-007 9.74e-008 1.92e-007
n-Hexane Cyclohexane Other Hexanes		1.00e-002 5.70e-002 2.28e-002

2,2,4-Trimethylpentane 1.85e-004 1.96e-002 Benzene 2.05e-003 2.17e-001 Toluene 8.94e-003 9.46e-001 Ethylbenzene 2.15e-003 2.27e-001 Xylenes 1.88e-002 1.99e+000 C8+ Heavies 4.45e-003 4.70e-001 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ----- -----Total Components 100.00 1.06e+004 RICH GLYCOL STREAM _____ Temperature: 75.00 deg. F Pressure: 1214.70 psia Flow Rate: 1.94e+001 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (15') Component ----- -----TEG 9.60e+001 1.04e+004 Water 2.61e+000 2.83e+002 Carbon Dioxide 3.02e-002 3.28e+000 Nitrogen 4.17e-003 4.52e-001 Methane 3.25e-001 3.53e+001 Ethane 2.66e-001 2.89e+001 Propane 1.42e-001 1.54e+001 Isobutane 2.99e-002 3.25e+000 n-Butane 7.15e-002 7.76e+000 Isopentane 2.16e-002 2.35e+000 n-Pentane 2.62e-002 2.84e+000 n-Hexane 1.85e-002 2.01e+000 Cyclohexane 1.64e-002 1.78e+000 Other Hexanes 2.11e-002 2.28e+000 Heptanes 4.44e-002 4.81e+000 2,2,4-Trimethylpentane 1.20e-002 1.30e+000 Benzene 3.99e-002 4.33e+000 Toluene 1.10e-001 1.20e+001 Ethylbenzene 2.01e-002 2.18e+000 Xylenes 1.42e-001 1.54e+001 C8+ Heavies 3.61e-002 3.92e+000 _____ ____ Total Components 100.00 1.08e+004 FLASH TANK OFF GAS STREAM _____ Temperature: 135.00 deg. F 49.70 psia 1.35e+003 scfh Pressure: Flow Rate: Conc. Loading (vol%) (lb/hr) Component _____ ____ Water 3.23e-001 2.07e-001 Carbon Dioxide 1.51e+000 2.37e+000 Nitrogen 4.37e-001 4.37e-001 Methane 5.96e+001 3.41e+001 Ethane 2.40e+001 2.58e+001 Propane 7.84e+000 1.23e+001 Isobutane 1.14e+000 2.36e+000

Page: 8 n-Butane 2.51e+000 5.20e+000 Isopentane 5.81e-001 1.50e+000 n-Pentane 6.48e-001 1.67e+000 n-Hexane 2.88e-001 8.87e-001 Cyclohexane 9.42e-002 2.83e-001 Other Hexanes 3.77e-001 1.16e+000 Heptanes 3.75e-001 1.34e+000 2,2,4-Trimethylpentane 1.37e-001 5.58e-001 Benzene 4.21e-002 1.17e-001 Toluene 6.23e-002 2.05e-001 Ethylbenzene 5.59e-003 2.12e-002 Xylenes 2.70e-002 1.02e-001 C8+ Heavies 2.07e-002 1.26e-001 ----- -----Total Components 100.00 9.07e+001 FLASH TANK GLYCOL STREAM -----Temperature: 135.00 deg. F Flow Rate: 1.92e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.68e+001 1.04e+004 Water 2.63e+000 2.82e+002 Carbon Dioxide 8.46e-003 9.10e-001 Nitrogen 1.36e-004 1.47e-002 Methane 1.09e-002 1.17e+000 Ethane 2.89e-002 3.11e+000 Propane 2.88e-002 3.10e+000 Isobutane 8.27e-003 8.90e-001 n-Butane 2.38e-002 2.56e+000 Isopentane 7.91e-003 8.51e-001 n-Pentane 1.09e-002 1.18e+000 n-Hexane 1.04e-002 1.12e+000 Cyclohexane 1.39e-002 1.50e+000 Other Hexanes 1.05e-002 1.13e+000 Heptanes 3.23e-002 3.47e+000 2,2,4-Trimethylpentane 6.94e-003 7.47e-001 Benzene 3.92e-002 4.21e+000 Toluene 1.09e-001 1.18e+001 Ethylbenzene 2.01e-002 2.16e+000 Xylenes 1.42e-001 1.53e+001 C8+ Heavies 3.52e-002 3.79e+000 _____ -----Total Components 100.00 1.08e+004 FLASH GAS EMISSIONS _____ Flow Rate: 5.63e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00 Component Conc. Loading (vol%) (lb/hr) Water 6.10e+001 1.63e+002 Carbon Dioxide 3.84e+001 2.51e+002 Nitrogen 1.05e-001 4.37e-001

Methane 2.87e-001 6.82e-001 Ethane 1.16e-001 5.15e-001 Propane 3.77e-002 2.47e-001 Isobutane 5.47e-003 4.71e-002 n-Butane 1.21e-002 1.04e-001 Isopentane 2.80e-003 2.99e-002 n-Pentane 3.12e-003 3.34e-002 n-Hexane 1.39e-003 1.77e-002 Cyclohexane 4.53e-004 5.66e-003 Other Hexanes 1.81e-003 2.32e-002 Heptanes 1.81e-003 2.68e-002 2,2,4-Trimethylpentane 6.59e-004 1.12e-002 Benzene 2.03e-004 2.35e-003 Toluene 3.00e-004 4.10e-003 Ethylbenzene 2.69e-005 4.24e-004 Xylenes 1.30e-004 2.04e-003 C8+ Heavies 9.97e-005 2.52e-003 _____ ____ Total Components 100.00 4.16e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.90e+003 scfh		
Component		Loading (lb/hr)
Water	8.99e+001	1 24e+002
Carbon Dioxide		
Nitrogen	6.86e-003	1.47e-002
Methane	6.86e-003 9.56e-001	1.17e+000
	1.36e+000	
	9.20e-001	
	2.00e-001	
	5.76e-001	
Isopentane		
n-Pentane	2.11e-001	1.160+000
n-Hexane	1.69e-001	1.11e+000
Cyclohexane	2.24e-001	1.44e+000
Other Hexanes	1.68e-001	1.10e+000
	4.50e-001	
2,2,4-Trimethylpentane	8.33e-002	7.27e-001
Benzene	6.70e-001	4 000+000
	1.54e+000	
Ethylbenzene		
	1.64e+000	
C8+ Heavies	2.55e-001	3.32e+000
Total Components	100.00	1.79e+002

COMBUSTION DEVICE OFF GAS STREAM

 	1000 00					•
Temperature: Pressure:	14.70	<u> </u>	Г			
Flow Rate:	5.69e+000	scfh				
	Component	-		Conc. (vol%)	Loading (lb/hr)	

COI	IC. I	JOau
(vc) ()	(lb/

----- -----Methane 9.75e+000 2.34e-002 Ethane 1.38e+001 6.23e-002 Propane 9.39e+000 6.20e-002 Isobutane 2.04e+000 1.78e-002 n-Butane 5.87e+000 5.11e-002 Isopentane 1.55e+000 1.68e-002 n-Pentane 2.15e+000 2.32e-002 n-Hexane 1.72e+000 2.22e-002 Cyclohexane 2.29e+000 2.88e-002 Other Hexanes 1.71e+000 2.21e-002 Heptanes 4.59e+000 6.89e-002 2,2,4-Trimethylpentane 8.50e-001 1.45e-002 Benzene 6.83e+000 7.99e-002 Toluene 1.57e+001 2.16e-001 Ethylbenzene 2.43e+000 3.87e-002 Xylenes 1.67e+001 2.66e-001 C8+ Heavies 2.60e+000 6.64e-002 _____ _____ Total Components 100.00 1.08e+000

* * Project Setup Information : Z:\Client\EQT Corporation\West Virginia\Janus\153901.0106 R13 Application\04 Draft\2015-Project File 0708 Janus R13 Application\Attach N - Emission Calculations\E&P Tank\20150715_EQT_Janus_PWT.ept Flowsheet Selection : Oil Tank with Separator : **RVP** Distillation Calculation Method Control Efficiency : 95.0% Known Separator Stream : Geographical Region Geographical Region : All Regions in US Entering Air Composition : No Filed Name : Janus Produced Water Tank Well Name : 210 bbl PWT Date : 2015.07.15 * * Data Input : 300.00[psig] Separator Pressure Separator Temperature : 80.00[F] Ambient Pressure : 14.70[psia] Ambient Temperature : 80.00[F] C10+ SG : 0.8820 : 296.00 C10+ MW -- Low Pressure Oil ------No. Component mol % 1 H₂S 0.0000 2 02 0.0000 3 CO₂ 0.0300 4 N2 0.0900 5 C1 8.4300 6 C2 4.2300 7 C3 5.9100 8 i-C4 5.1700 9 n-C4 6.2200 10 i-C5 8.9100 11 n-C5 4.9700 12 C6 9.1100 13 C7 11.3400 C8 14 10.3900 15 C9 5.9600 C10+ 16 11.7500 17 Benzene 0.3700 18 Toluene 0.9800 19 E-Benzene 0.1500 20 1.1900 Xylenes 21 n-C6 4.8000 22 0.0000 224Trimethylp

Production R Days of Ann	ual Operatio	n : 365 [day	/s/year]			
API Gravity						
Reid Vapor I	Pressure	: 10.60[ps1a]				
		********	********	**********	**************************************	k
	ion Results *********	*******	*******	**********	***************************************	k
Item				trolled Con b/hr]	E&P TANK	
Page 1					E&P TANK	
Total HAPs	0.100	0.023	0.005	0.001		
Total HC	5.529	1.262	0.276	0.063		
VOCs, C2+	4.836	1.104	0.242	0.055		
VOCs, C3+	4.186	0.956	0.209	0.048		
HC Vap	287.1100 or 285.830	x1E-3 [MS0)0 x1E-3 [M	SCFD]			
	287.11	-	-			
-				Controlled	Controlled	
	[ton/yr] [•			
1 H2S	0.000		0.000			
2 O2						
3 CO2 4 N2	0.007	0.002	0.007	0.002		
5 C1			0.035	0.008		
6 C2	0.651	0.149	0.033	0.007		
7 C3	1.194	0.273	0.060	0.014		
8 i-C4	0.841	0.192	0.042	0.010		
9 n-C4	0.791	0.181	0.040	0.009		
10 i-C5 11 n-C5	0.653 0.276	0.149 0.063	0.033 0.014	0.007 0.003		
11 II-C3 12 C6	0.270	0.003	0.014	0.003		
12 C0 13 C7	0.204	0.047	0.005	0.002		
13 C7 14 C8	0.030	0.022	0.003	0.001		
14 C8 15 C9	0.006	0.007	0.002	0.000		
16 C10+	0.000	0.001	0.000	0.000		
17 Benzene	0.000	0.001	0.000	0.000		
18 Toluene	0.005	0.001	0.000	0.000		
19 E-Benzer			0.000	0.000		
20 Xylenes	0.002	0.000	0.000	0.000		
20 Arylenes 21 n-C6	0.085	0.019	0.000	0.001		
22 224Trime						
Total	5.550	1.267	0.277	0.063		
Stream Da	to					

-- Stream Data -----

No. Component	MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions
	mol % mol % mol % mol % mol %
1 H2S	34.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 O2	32.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 CO2	44.01 0.0300 0.0021 0.0000 0.1194 0.0496 0.1111
4 N2	28.01 0.0900 0.0006 0.0000 0.3763 0.0145 0.3332
5 C1	16.04 8.4300 0.2054 0.0000 34.7691 4.8646 31.2062
6 C2	30.07 4.2300 0.5879 0.0039 15.8939 13.8313 15.6481
7 C3	44.10 5.9100 2.4063 0.8494 17.1306 37.7108 19.5826
8 i-C4	58.12 5.1700 3.7204 3.2119 9.8124 15.2521 10.4605
9 n-C4	58.12 6.2200 5.2238 4.8805 9.4102 13.0089 9.8389
10 i-C5	72.15 8.9100 9.7007 9.7854 6.3777 7.7795 6.5447
11 n-C5	72.15 4.9700 5.6802 5.7866 2.6955 3.2686 2.7638
12 C6	86.16 9.1100 11.4207 11.8324 1.7100 2.0852 1.7547
13 C7	100.20 11.3400 14.6665 15.2753 0.6869 0.8605 0.7075
14 C8	114.23 10.3900 13.5756 14.1635 0.1882 0.2442 0.1949
15 C9	128.28 5.9600 7.8101 8.1523 0.0352 0.0503 0.0370
16 C10+	175.93 11.7500 15.4190 16.0990 0.0000 0.0000 0.0000
17 Benzene	78.11 0.3700 0.4701 0.4881 0.0496 0.0610 0.0509
18 Toluene	92.13 0.9800 1.2750 1.3293 0.0351 0.0448 0.0363
	106.17 0.1500 0.1963 0.2049 0.0017 0.0022 0.0017
•	106.17 1.1900 1.5580 1.6260 0.0114 0.0152 0.0119
	86.18 4.8000 6.0812 6.3116 0.6969 0.8566 0.7160
22 224Trimethy	lp 114.24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MW	100.95 120.35 123.46 38.83 49.76 40.13
Stream Mole	
Heating Value Gas Gravity	e [BTU/SCF] 2218.43 2811.04 2289.04 [Gas/Air] 1.34 1.72 1.39
Bubble Dt @	[Ods/AII] 1.54 1.72 1.59 100E [psia] 222.24 24.57 11.47
Dubble Ft. @	100F [psia] 322.24 24.57 11.47 E&P TANK
	[psia] 79.39 15.92 10.57
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Spec. Oravity	$(0.072 \ 0.073 \ 0.070 \ 0.0$

Identification User Identification: Citv:	TEG Tank
State:	West Virginia
Company:	EQT Gathering
Type of Tank:	Horizontal Tank
Description:	2,000 Gallon Tank
Tank Dimensions	
Shell Length (ft):	12.00
Diameter (ft):	5.30
Volume (gallons):	2,000.00
Turnovers:	0.00
Net Throughput(gal/yr):	4,200.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TEG Tank - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	55.41	46.54	64.27	51.30	0.0007	0.0004	0.0012	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TEG Tank - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0398
Vapor Space Volume (cu ft):	168.6255
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0645
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	168.6255
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	9.0011
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Aug. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.0645 35.4636 0.0008 0.0600 0.0007 0.0004 0.0012 515.0759 506.2100 523.9417
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9999 0.0007 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.):	0.0055 76.1100 0.0007 4,200.0000
Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.0000 1.0000 5.3000 1.0000
Total Losses (lb):	0.0453

Emissions Report for: Annual

TEG Tank - Horizontal Tank

	Losses(lbs)					
Components	Working Loss Breathing Loss Total Emiss					
Propylene glycol	0.01	0.04	0.05			

Identification User Identification: City: State: Company: Type of Tank: Description:	T007 West Virgina EQT Gathering Horizontal Tank Used MEG Tank - 4,200 gallon
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	25.10 5.30 4,200.00 1.00 4,200.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Light Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T007 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T007 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	1.1891
Vapor Space Volume (cu ft):	352.7083
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0648
Vented Vapor Saturation Factor:	0.9991
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	352.7083
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	13.0179
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	25.1000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	4 402 0070
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0648 35.4636 0.0041 0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	0.0061
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	0.0081 515.0759
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	506.2100 523.9417 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liguid:	0.9991
Surface Temperature (psia): Vapor Space Outage (ft):	0.0061 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0789 130.0000
Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers:	0.0061 4,200.0000 1.0000
Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	1.0000 5.3000 1.0000
Total Losses (lb):	1.2680

Emissions Report for: Annual

T007 - Horizontal Tank

	Losses(lbs)					
Components	Working Loss Breathing Loss Total Emission					
Distillate fuel oil no. 2	0.08	1.19	1.27			

Identification	
User Identification:	T006
City:	
State:	West Virgina
Company:	EQT Gathering
Type of Tank:	Horizontal Tank
Description:	Used MEG Tank - 2,000 gallon
Terl Dimensions	
Tank Dimensions	10.00
Shell Length (ft):	12.00
Diameter (ft):	5.30
Volume (gallons):	2,000.00
Turnovers:	0.53
Net Throughput(gal/yr):	1,050.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T006 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	55.41	46.54	64.27	51.30	0.0007	0.0004	0.0012	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T006 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0398
Vapor Space Volume (cu ft):	168.6255
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0645
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	168.6255
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	9.0011
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1.193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0645 35.4636 0.0008 0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	0.0007
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.0012 515.0759 506.2100
Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	523.9417 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liguid:	0.9999
Surface Temperature (psia): Vapor Space Outage (tt):	0.0007 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0014 76.1100
Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers:	0.0007 1,050.0000 0.5250
Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	1.0000 5.3000 1.0000
Total Losses (Ib):	0.0412

Emissions Report for: Annual

T006 - Horizontal Tank

	Losses(lbs)					
Components	Working Loss Breathing Loss Total Emissic					
Propylene glycol	0.00	0.04	0.04			

Identification User Identification: City: State: Company: Type of Tank: Description:	T005 West Virgina EQT Gathering Horizontal Tank New MEG Tank - 2,000 gallon	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	12.00 5.30 2,000.00 0.53 1,050.00 N N	
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Light Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T005 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	55.41	46.54	64.27	51.30	0.0007	0.0004	0.0012	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T005 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0398
Vapor Space Volume (cu ft):	168.6255
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0645
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	168.6255
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	9.0011
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1.193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0645 35.4636 0.0008 0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	0.0007
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.0012 515.0759 506.2100
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	523.9417 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.9999
Surface Temperature (psia): Vapor Space Outage (ft):	0.0007 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0014 76.1100
Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers:	0.0007 1,050.0000 0.5250
Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	1.0000 5.3000 1.0000
Total Losses (Ib):	0.0412

Emissions Report for: Annual

T005 - Horizontal Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Propylene glycol	0.00	0.04	0.04

Identification User Identification:	T009-T012	
City:	1009-1012	
State:	West Virgina	
Company:	EQT Gathering	
Type of Tank:	Horizontal Tank	
Description:	Engine Lube Oil Tank	
Tank Dimensions		
Shell Length (ft):	5.10	
Diameter (ft):	3.20	
Volume (gallons):	302.00	
Turnovers:	3.48	
Net Throughput(gal/yr):	1,050.00	
Is Tank Heated (y/n):	N	
Is Tank Underground (y/n):	Ν	
Paint Characteristics		
Shell Color/Shade:	Gray/Light	
Shell Condition	Good	
Breather Vent Settings		
Vacuum Settings (psig):	-0.03	
Pressure Settings (psig)	0.03	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T009-T012 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.		Vapor Mass		Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T009-T012 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0881
Vapor Space Volume (cu ft):	26.1252
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0648
Vented Vapor Saturation Factor:	0.9995
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	26.1252
Tank Diameter (ft):	3.2000
Effective Diameter (ft):	4.5596
Vapor Space Outage (ft):	1.6000
Tank Shell Length (ft):	5.1000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1.193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0648 35.4636 0.0041 0.0600 0.0061
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0040
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.0081 515.0759 506.2100
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	523.9417 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9995 0.0061 1.6000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Tumovers:	0.0197 130.0000 0.0061 1,050.0000 3.4768
Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	3.4788 1.0000 3.2000 1.0000
Total Losses (lb):	0.1078

Emissions Report for: Annual

T009-T012 - Horizontal Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Distillate fuel oil no. 2	0.02	0.09	0.11

Identification User Identification: City: State: Company: Type of Tank:	T003 West Virgina EQT Gathering Horizontal Tank	
Description:	Engine Lube Oil - 4,200 gallon	
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	12.00 5.30 2,000.00 2.10 4,200.00 N N	
Paint Characteristics Shell Color/Shade: Shell Condition	Gray/Light Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T003 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.		Vapor Mass		Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T003 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.5685
Vapor Space Volume (cu ft):	168.6255
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0648
Vented Vapor Saturation Factor:	0.9991
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	168.6255
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	9.0011
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Avg. Startation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.0648 35.4636 0.0041 0.0600 0.0061 0.0081 515.0759 506.2100 523.9417 24.1833 0.9991 0.0061 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.0789 130.0000 4,200.0000 2.1000 1.0000 5.3000 1.0000
Total Losses (Ib):	0.6474

Emissions Report for: Annual

T003 - Horizontal Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	0.08	0.57	0.65					

Identification	
User Identification:	T004
City:	
State:	West Virgina
Company:	EQT Gathering
Type of Tank:	Horizontal Tank
Description:	Compressor Oil - 4,200 gallon
Tank Dimensions	
Shell Length (ft):	12.00
Diameter (ft):	5.30
Volume (gallons):	2,000.00
Turnovers:	3.63
Net Throughput(gal/yr):	7,266.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
	6000
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
6 (i 6)	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T004 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T004 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.5685
Vapor Space Volume (cu ft):	168.6255
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0648
Vented Vapor Saturation Factor:	0.9991
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	168.6255
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	9.0011
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0061
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Avg. Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.0648 35.4636 0.0041 0.0600 0.0061 0.0081 515.0759 506.2100 523.9417 24.1833 0.9991 0.0061 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.1365 130.0000 7,266.0000 3.6330 1.0000 5.3000 1.0000
Total Losses (lb):	0.7049

Emissions Report for: Annual

T004 - Horizontal Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	0.14	0.57	0.70					

Identification		
User Identification:	T013-T016	
City:		
State:	West Virgina	
Company:	EQT Gathering	
Type of Tank:	Horizontal Tank	
Description:	Compressor Oil Tank	
Tank Dimensions		
Shell Length (ft):	5.10	
Diameter (ft):	3.20	
Volume (gallons):	302.00	
Turnovers:	3.48	
Net Throughput(gal/yr):	1,050.00	
Is Tank Heated (y/n):	Ν	
Is Tank Underground (y/n):	N	
Paint Characteristics		
Shell Color/Shade:	Gray/Light	
Shell Condition	Good	
	Soca	
Breather Vent Settings		
Vacuum Settings (psig):	-0.03	
Pressure Settings (psig)	0.03	
o (1 o)		

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T013-T016 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	55.41	46.54	64.27	51.30	0.0061	0.0040	0.0081	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T013-T016 - Horizontal Tank

0.0881 26.1252
26.1252
0.0001
0.0648
0.9995
26.1252
3.2000
4.5596
1.6000
5.1000
0.0001
130.0000
0.0061
515.0759
49.0583
10.731
510.9683
0.5400
1,193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0648 35.4636 0.0041 0.0600 0.0061
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0040
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.0081 515.0759 506.2100
Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	523.9417 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9995 0.0061 1.6000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Tumovers:	0.0197 130.0000 0.0061 1,050.0000 3.4768
Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	1.0000 3.2000 1.0000
Total Losses (lb):	0.1078

Emissions Report for: Annual

T013-T016 - Horizontal Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	0.02	0.09	0.11					

Identification		
User Identification:	T017-T018	
City:		
State:	West Virgina	
Company:	EQT Gathering	
Type of Tank:	Horizontal Tank	
Description:	Ice Chek Tank	
Tank Dimensions		
	5.40	
Shell Length (ft):	5:40 4 20	
Diameter (ft):	1120	
Volume (gallons):	550.00	
Turnovers:	6.34	
Net Throughput(gal/yr):	3,486.00	
Is Tank Heated (y/n):	N	
Is Tank Underground (y/n):	Ν	
Paint Characteristics		
Shell Color/Shade:	Gray/Light	
Shell Condition	Good	
	6000	
Breather Vent Settings		
Vacuum Settings (psig):	-0.03	
Pressure Settings (psig)	0.03	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T017-T018 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	55.41	46.54	64.27	51.30	0.0007	0.0004	0.0012	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T017-T018 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0112
Vapor Space Volume (cu ft):	47.6522
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0645
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	47.6522
Tank Diameter (ft):	4.2000
Effective Diameter (ft):	5.3751
Vapor Space Outage (ft):	2.1000
Tank Shell Length (ft):	5.4000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,193.8870

Vapor Space Outage (ft): 2.1000 Working Losses (lb): 0.0046 Vapor Molecular Weight (lb/lb-mole): 76.1100 Vapor Pressure at Daily Average Liquid Surface Temperature (osia): 0.0007	Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (pisia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Mg. Liquid Surface Temp. (deg R): Daily Mg. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max Expansion Sector Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0.0645 35.4636 0.0008 0.0600 0.0007 0.0004 0.0012 515.0759 506.2100 523.9417 24.1833 0.9999 0.0007
	Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0046 76.1100
	Total Losses (lb):	0.0158

Emissions Report for: Annual

T017-T018 - Horizontal Tank

		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Propylene glycol	0.00	0.01	0.02							

Identification		
User Identification:	T008	
City:		
State:	West Virgina	
Company:	EQT Gathering	
Type of Tank:	Horizontal Tank	
Description:	Ice chek Tank - 4,000 gallon	
Tank Dimensions		
	22.00	
Shell Length (ft):	23.90	
Diameter (ft):	5.30	
Volume (gallons):	4,000.00	
Turnovers:	5.25	
Net Throughput(gal/yr):	21,000.00	
Is Tank Heated (y/n):	N	
Is Tank Underground (y/n):	Ν	
Paint Characteristics		
Shell Color/Shade:	Gray/Light	
Shell Condition	Good	
Breather Vent Settings		
Vacuum Settings (psig):	-0.03	
Pressure Settings (psig)	0.03	

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T008 - Horizontal Tank

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	55.41	46.54	64.27	51.30	0.0007	0.0004	0.0012	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T008 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.0792
Vapor Space Volume (cu ft):	335.8458
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0645
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	335.8458
Tank Diameter (ft):	5.3000
Effective Diameter (ft):	12.7029
Vapor Space Outage (ft):	2.6500
Tank Shell Length (ft):	23.9000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0007
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,193,8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Ag. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Ag. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor	0.0645 35.4636 0.0008 0.0600 0.0007 0.0004 0.0012 516.0759 506.2100 523.9417 24.1833
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9999 0.0007 2.6500
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.0277 76.1100 0.0007 21,000.0000 5.2500 1.0000 5.3000 1.0000
Total Losses (lb):	0.1069

Emissions Report for: Annual

T008 - Horizontal Tank

		Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions							
Propylene glycol	0.03	0.08	0.11							

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O - MONITORING, RECORDING, REPORTING, AND TESTING PLANS

Plan Type	Emission unit	Pollutant	Requirements	Frequency	Method of	Regulatory
					Measurement	Reference
Monitoring,	Compressor	NO _X , CO,	Performance test	Initial and every	EPA Test Methods	NSPS JJJJ
Recordkeeping	Engines	VOC		three years or		
				8,760 hours of		
				operation		
Monitoring,	Compressor		Maintenance records	Each occurrence	N/A	NSPS JJJJ
Recordkeeping	Engines					
Monitoring,	Compressor	VOC	Change rod packing	Every 36 months	N/A	NSPS OOOO
Recordkeeping	_			or 26,000 hours of		
				operation		
Monitoring,		VOC	Monitor throughput of loading	Monthly	Records	
Recordkeeping	Liquid					
	Loading					
Recordkeeping	Dehydration	HAP	Maintain benzene emissions	Annual	GRI-GLYCalc with	40 CFR 63
	Unit		below 0.9 megagrams/yr		actual operating	Subpart HH
					parameters	

See Attachment D for additional information.

ATTACHMENT P

Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EGT Gathering, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a construction permit (R-13) to construct a new natural gas compressor station (the Janus Station) located off Left Fork Run Road in Doddridge County, West Virginia. The site latitude and longitude coordinates are: 39.25777 N, - 80.80566 W.

The applicant estimates the potential increase in the following Regulated Air Pollutants associated with the project after the installation of the proposed equipment:

Particulate Matter (PM) = 9.1 tpy Sulfur Dioxide (SO2) = 0.7 tpy Volatile Organic Compounds (VOC) = 95.6 tpy Carbon Monoxide (CO) = 59.1 tpy Nitrogen Oxides (NOx) = 127.2 tpy Hazardous Air Pollutants (HAPs) = 24.1 tpy Carbon Dioxide Equivalents (CO₂e) = 146,419 tpy

Startup of operation will begin on or about March of 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated on August 24, 2015.

By: EQT Gathering, LLC Diana Charletta, Senior Vice President – Midstream Operations 625 Liberty Avenue Suite 1700 Pittsburgh, PA 15222